Target মাধ্যমিক 2025
\(3x^2-6x+p=0\) সমীকরণের বীজদ্বয় বাস্তব ও সমান হলে \(p\) এর মান (a) \(\cfrac{5}{3}\) (b) -\(\cfrac{1}{3}\) (c) -3 (d) 3
Answer: D
\(3x^2-6x+p=0\) সমীকরনটিকে \(ax^2+\)
\(bx+c=0\) সমীকরণের সাথে তুলনা করে পাই,
\(a=3,b=-6\) এবং \(c=p\)
যেহেতু বীজদ্বয় বাস্তব ও সমান,
∴নিরূপক \(=0\)
সুতরাং, \(b^2-4ac=0\)
অর্থাৎ, \((-6)^2-4×3×p=0\)
বা, \(36-12p=0\)
বা,\(-12p=-36\)
\(∴ p=3\)
Ganitsarani.in