যদি \(\sin 17°= \cfrac{x}{y}\) হয়, তাহলে দেখাই যে, \(\sec 17°- \sin 73° \) \(= \cfrac{x^2}{y\sqrt{y^2-x^2}}\)
\(∵ \sin 17°=\cfrac{x}{y}\)
বা, \(\sin^2 17°=(\cfrac{x}{y})^2\)
বা, \(1- \sin^2 17° =1-\cfrac{x^2}{y^2}\)
বা, \(\cos^2 17°=\cfrac{y^2-x^2}{y^2}\)
বা, \(\cos 17°=\sqrt{\cfrac{y^2-x^2}{y^2}}\)
বা, \(\cos 17°=\cfrac{\sqrt{y^2-x^2}}{y}\)
\(\sec 17°-\sin 73°\)
\(=\cfrac{1}{\cos 17°} -\sin(90°-17°)\)
\(=\cfrac{1}{\cos 17°} -\cos 17°\)
\(=\cfrac{1}{\cfrac{\sqrt{y^2-x^2}}{y}}-\cfrac{\sqrt{y^2-x^2}}{y}\)
\(=\cfrac{y}{\sqrt{y^2-x^2}}–\cfrac{\sqrt{y^2-x^2}}{y}\)
\(=\cfrac{y^2-(y^2-x^2 )}{y\sqrt{y^2-x^2}}\)
\(=\cfrac{y^2-y^2+x^2}{y\sqrt{y^2-x^2}}\)
\(=\cfrac{x^2}{y\sqrt{y^2-x^2}}\) (প্রমাণিত)