\(\tan θ=1\) হলে \(\cfrac{8 \sin θ+5 \cos θ}{\sin^3⁡ θ-2 \cos^3 θ + 7 \cos θ}\) -এর মান নির্ণয় করি।


\(∵ tan⁡θ=1 \)
বা, \(tan⁡θ=tan⁡ 45° \)
বা, \(θ=45°\)

\(∴\cfrac{8sinθ+5cosθ}{sin^3⁡θ-2 cos^3⁡θ+7cosθ} \) এর \(θ \)এর স্থানে \(45°\) বসিয়ে পাই∶

\(\cfrac{8sin45°+5cos45°}{sin^3⁡ 45° -2 cos^3⁡ 45° +7cos45°} \)

\(=\cfrac{8×\cfrac{1}{√2}+5×\cfrac{1}{√2}}{\left(\cfrac{1}{√2}\right)^3-2×\left(\cfrac{1}{√2}\right)^3+7×\cfrac{1}{√2}}\)

\(=\cfrac{\cfrac{8}{√2}+\cfrac{5}{√2}}{\cfrac{1}{2√2}-\cfrac{2}{2√2}+\cfrac{7}{√2}}\)

\(=\cfrac{\cfrac{13}{√2}}{\cfrac{1-2+14}{2√2}}\)

\(=\cfrac{13}{√2}×\cfrac{2√2}{13}\)

\(=2\) (Answer)


Similar Questions