যদি \( 3x=cosec\alpha\) এবং \(\cfrac{3}{x}=cot\alpha\) হয় তাহলে \(\left(x^2-\cfrac{1}{x^2}\right)\) এর মান কত?


\( 3x=cosec\alpha\)
বা, \(x=\cfrac{cosec \alpha}{3}\)

এবং \(\cfrac{3}{x}=cot\alpha\)
বা, \(\cfrac{1}{x}=\cfrac{cot \alpha}{3}\)

\(x^2-\cfrac{1}{x^2}\)
\(=\left(\cfrac{cosec \alpha}{3}\right)^2-\left(\cfrac{cot \alpha}{3}\right)^2\)
\(=\cfrac{cosec^2\alpha}{9}-\cfrac{cot^2 \alpha}{9}\)
\(=\cfrac{1}{9}\left[cosec^2\alpha-cot^2\alpha\right]\)
\(=\cfrac{1}{9}\)

Similar Questions