1. √6 ×√15=x√10 হলে x –এর মান হিসাব করে লিখি ।
2. \((√5+√3)(√5-√3)=25-x^2\) একটি সমীকরণ হলে,\(x\) –এর মান হিসাব করে লিখি ।
3. একটি বর্গাকার ভূমিবিশিষ্ট পিতলের প্লেটের দৈর্ঘ্য \(x\) সেমি, বেধ 1 মিলিমি এবং প্লেটটির ওজন 4725 গ্রাম। যদি 1 ঘনসেমি পিতলের ওজন 8.4 গ্রাম হয় তাহলে \(x\)-এর মান কত হবে তা হিসাব করে লিখি ।
4. \(k\) এর মান কত হলে \(x^2+kx+3=0\) দ্বিঘাত সমীকরনের একটি বীজ \(1\) হবে হিসাব করে লিখি ।
5. একটি সমকোণী চৌপলের আয়তন 432 ঘনসেমি। তাকে সমান আয়তনবিশিষ্ট দুটি ঘনক-এ পরিনত করা হলে, প্রতিটি ঘনকের প্রত্যেক ধারের দৈর্ঘ্য কত হবে হিসাব করে লিখি ।
6. একটি বর্গাকার ভূমিবিশিষ্ট পিতলের প্লেটের দৈর্ঘ্য x সেমি, বেধ 1 মিলিমি এবং প্লেটটির ওজন 4725 গ্রাম। যদি 1 ঘনসেমি পিতলের ওজন 8.4 গ্রাম হয় তাহলে x-এর মান কত হবে তা হিসাব করে লিখি ।
7. ঘনকাকৃতি একটি সম্পূর্ণ জলপূর্ণ চৌবাচ্চা থেকে সমান মাপের 64 বালতি জল তুলে নিলে চৌবাচ্চাটির 1/3 অংশ জলপূর্ণ থাকে। চৌবাচ্চার একটি ধারের দৈর্ঘ্য 1.2 মিটার হলে, প্রতিটি বালতিতে কত লিটার জল ধরে তা হিসাব করে লিখি।
8. বার্ষিক 9% সুদের হারে কিছু টাকার 2 বছরের চক্রবৃদ্ধি সুদ ও সরল সুদের অন্তর 129.60 টাকা হলে, ওই টাকার পরিমান হিসাব করে লিখি ।
9. কোনো নির্দিষ্ট পরিমান মূলধনের 1 বছরের সরল সুদ 50 টাকা এবং 2 বছরের চক্রবৃদ্ধি সুদ 102 টাকা হলে, মূলধনের পরিমান ও বার্ষিক সুদের হার হিসাব করে লিখি ।
10. পহলমপুর গ্রামে বর্তমান লোকসংখ্যা 10000; ওই গ্রামে প্রতি বছর জনসংখ্যা বৃদ্ধির হার 3% হলে, 2 বছর পরে ওই গ্রামের জনসংখ্যা কত হবে, তা হিসাব করে লিখি ।
11. পাড়ার একটি লেদ কারখানার একটি মেশিনের মূল্য প্রতি বছর 10% হ্রাস প্রাপ্ত হয়। মেশিনটির বর্তমান মূল্য 100000 টাকা হলে, 3 বছর পরে ওই মেশিনটির মূল্য কত হবে, তা হিসাব করে লিখি ।
12. বোতল ভর্তি ঠান্ডা পানীয় ব্যবহারের উপর বিরূপ প্রতিক্রিয়া প্রচারের ফলে প্রতি বছর তার পূর্ববর্তী বছরের তুলনায় ওই ঠান্ডা পানীয় ব্যবহারকারীর সংখ্যা 25% হ্রাস পায়। 3 বছর পূর্বে কোনো শহরে ঠান্ডা পানীয় ব্যবহারকারীর সংখ্যা 80000 হলে, বর্তমান বছরে ঠান্ডা পানীয় ব্যবহারকারীর সংখ্যা কত হবে, তা হিসাব করে লিখি ।
13. \(x=\cfrac{8ab}{a+b}\) হলে, \(\left(\cfrac{x+4a}{x-4a}+\cfrac{x+4b}{x-4b}\right)\) এর মান হিসাব করে লিখি।
14. সমান ব্যাস ও উচ্চতাবিশিষ্ট তিনটি জারের প্রথমটির \(\frac{2}{3}\) অংশ, দ্বিতীয়টির \(\frac{5}{6}\) অংশ এবং তৃতীয়টির \(\frac{7}{9}\) অংশ লঘু সালফিউরিক অ্যাসিডে পূর্ণ ছিল । ওই তিনটি জারের অ্যাসিড যদি 2.1 দেসিমি. দৈর্ঘ্যের ব্যাসের একটি জারে রাখা হয়, তবে জারে অ্যাসিডের উচ্চতা 4.1 ডেসিমি. হয় । প্রথম তিনটি জারের ব্যাসের দৈর্ঘ্য 1.4 ডেসিমি. হলে, তাদের উচ্চতা হিসাব করে লিখি ।
15. সমান ঘনত্বের একটি লম্ব বৃত্তাকার কাঠের গুঁড়ির বক্রতলের ক্ষেত্রফল 440 বর্গ ডেসিমি. । এক ঘন ডেসিমি কাঠের ওজন 1.5 কিগ্রা. এবং গুঁড়িটির ওজন 9.24 কুইন্টাল হলে, গুঁড়িটির ব্যাসের দৈর্ঘ্য ও উচ্চতা হিসাব করে লিখি ।
16. ABC সমদ্বিবাহু ত্রিভুজের AB = AC. সমদ্বিবাহু ত্রিভুজটির পরিকেন্দ্র O এবং BC বাহুর যেদিকে A বিন্দু অবস্থিত তার বিপরীত পার্শ্বে কেন্দ্র O অবস্থিত। \(\angle\)BOC= 100° হলে \(\angle\)ABC ও \(\angle\)ABO-এর মান হিসাব করে লিখি।
17. O কেন্দ্রীয় বৃত্তের ABCD একটি বৃত্তস্থ চতুর্ভুজ। DC বাহুকে P বিন্দু পর্যন্ত বর্ধিতকরা হলো। \(\angle\)BCP = 108° হলে, \(\angle\)BOD-এর মান হিসাব করে লিখি।
18. √5 এর করণী নিরসক উৎপাদক √x হলে, x-এর ক্ষুদ্রতম মান কত হবে তা হিসাব করে লিখি । [যেখানে x একটি পূর্ণসংখ্যা ]
19. পাশের বৃত্তস্থ চতুর্ভুজ ABCD-এর AD ও AB বাহুকে যথাক্রমে E ও F বিন্দু পর্যন্ত বর্ধিত করলাম। \(\angle\)CBF = 120° হলে, \(\angle\)CDE -এর মান হিসাব করে লিখি।
20. ABCD বৃত্তস্থ চতুর্ভুজের AB ও DCবাহকে বর্ধিত করায় P বিন্দুতে এবং AD ও BC বাহুকে বর্ধিত করায় Q বিন্দুতে মিলিত হয়েছে। \(\angle\)ADC = 85° এবং \(\angle\)BPC = 40° হলে, \(\angle\)BAD ও \(\angle\)CQD-এর মান হিসাব করে লিখি।
21. y, x -এর বর্গের সঙ্গে সরলভেদে আছে এবং y = 9 যখন x = 9; y-কে x দ্বারা প্রকাশ করি এবং y = 4 হলে, x-এর মান হিসাব করে লিখি।
22. ABC ত্রিভুজের BC বাহুর সমান্তরাল সরলরেখা AB ও AC-কে যথাক্রমে D ও E বিন্দুতে ছেদ। করেছে। AE = 2AD হলে, DB : EC-এর মান হিসাব করে লিখি।
23. একটি নিরেট অর্ধগােলক ও একটি নিরেট শঙ্কুর ভূমিতলের ব্যাসের দৈর্ঘ্য সমান ও উচ্চতা সমান। হলে তাদের আয়তনের অনুপাত এবং বক্রতলের ক্ষেত্রফলের অনুপাত হিসাব করে লিখি।
24. একটি বৃত্তের ব্যাসার্ধের দৈর্ঘ্য 6 সেমি. হলে, ওই বৃত্তে 15 সেমি. দৈর্ঘ্যের বৃত্তচাপ কেন্দ্রে যে কেন্দ্রস্থ কোণ তৈরি করে, তার বৃত্তীয় মান কত হবে তা হিসাব করে লিখি।
25. যদি একটি চিমনির গোড়ার সঙ্গে সমতলে অবস্থিত একটি বিন্দুর সাপেক্ষে চিমনির চুড়ার উন্নতি কোণ 60° হয় এবং সেই বিন্দু ও চিমনির গোড়ার সঙ্গে একই সরলরেখায় অবস্থিত ওই বিন্দু থেকে আরও 24 মিটার দূরের অপর একটি বিন্দুর সাপেক্ষে চিমনির চুড়ার উন্নতি কোণ 30° হয়, তাহলে চিমনির উচ্চতা হিসাব করে লিখি। [√3 -এর আসন্ন মান 1.732 ধরে তিন দশমিক স্থান পর্যন্ত আসন্ন মান নির্ণয় করি]
26. cosecθ- cotθ= √2 - 1 হলে, (cosecθ+ cotθ) -এর মান হিসাব করে লিখি।
27. sinθcosθ=\(\cfrac{1}{2}\) হলে, (sinθ+ cosθ) -এর মান হিসাব করে লিখি।
28. \(\cfrac{sinθ+cosθ}{sinθ-cosθ}=7\) হলে, tanθ-এর মান হিসাব করে লিখি।
29. \(\cfrac{cosecθ+sinθ}{cosecθ-sinθ}=\cfrac{5}{2}\) হলে, sinθ-এর মান হিসাব করে লিখি।
30. \(secθ+cosθ=\cfrac{5}{2}\) হলে, (secθ- cosθ) -এর মান হিসাব করে লিখি।
31. \(tan^2 θ+cot^2 θ= \cfrac{10}{3}\) হলে, tanθ + cotθ এবং tanθ- cotθ-এর মান নির্ণয় করি এবং সেখান থেকে tanθ-এর মান হিসাব করে লিখি।
32. \(sec^2 θ+tan^2 θ = \cfrac{13}{12}\) হলে, \(sec^4 θ- tan^4 θ\)-এর মান হিসাব করে লিখি।
33. ABC সমকোণী ত্রিভুজের ∠B সমকোণ। AB = 8√3 সেমি. এবং BC = 8 সেমি. হলে, ∠ACB ও ∠BAC-এর মান হিসাব করে লিখি।
34. \(x tan 30° + y cot 60° = 0\) এবং \(2x –y tan 45° = 1\) হলে, \(x\) ও \(y\)-এর মান হিসাব করে লিখি।
35. একটি নিরেট লম্ব বৃত্তাকার শঙ্কুর উচ্চতা 20 সেমি. এবং তির্যক উচ্চতা 25 সেমি.। শঙ্কুটির সমান আয়তনবিশিষ্ট একটি নিরেট লম্ব বৃত্তাকার চোঙের উচ্চতা 15 সেমি. হলে, চোঙটির ভূমিতলের ব্যাসের দৈর্ঘ্য হিসাব করে লিখি।
36. একটি নিরেট গোলক ও একটি নিরেট লম্ব বৃত্তাকার চোঙের ব্যাসার্ধের দৈর্ঘ্য সমান ও তাদের ঘনফলও সমান হলে, চোঙটির ব্যাসার্ধের দৈর্ঘ্য ও উচ্চতার অনুপাত হিসাব করে লিখি।
37. একটি নিরেট লম্ব বৃত্তাকার শঙ্কুকে গলিয়ে একটি নিরেট লম্ব বৃত্তাকার চোঙ তৈরি করা হলো। উভয়ের ব্যাসার্ধের দৈর্ঘ্য সমান। যদি শঙ্কুর উচ্চতা 15 সেমি. হয়, তাহলে নিরেট চোঙের উচ্চতা কত হিসাব করে লিখি।
38. একটি ঘনবস্তুর নীচের অংশ অর্ধগোলক আকারের এবং উপরের অংশ লম্ব বৃত্তাকার শঙ্কু আকারের। যদি দুটি অংশের তলের ক্ষেত্রফল সমান হয়, তাহলে ব্যাসার্ধের দৈর্ঘ্য এবং শঙ্কুর উচ্চতার অনুপাত হিসাব করে লিখি।
39. PB = AQ, AP= 9 একক, QC = 4 একক হলে, PB-এর দৈর্ঘ্য হিসাব করে লিখি।
40. PB-এর দৈর্ঘ্য AP-এর দৈর্ঘ্যের দ্বিগুণ এবং QC-এর দৈর্ঘ্য AQ-এর দৈর্ঘ্যের চেয়ে 3 একক বেশি হলে, AC-এর দৈর্ঘ্য কত হবে, হিসাব করে লিখি।
41. মাসুম O কেন্দ্রীয় একটি বৃত্ত অঙ্কন করেছে যার AB একটি জ্যা। B বিন্দুতে একটি স্পর্শক অঙ্কন করেছি যা বর্ধিত AO-কে T বিন্দুতে ছেদ করল। ∠BAT = 21° হলে, ∠BTA-এর মান হিসাব করে লিখি।
42. x, y-এর সঙ্গে সরলভেদে এবং z-এর সঙ্গে ব্যস্ত ভেদে আছে। y=4, z=5 হলে x=3 হয়। আবার y=16, z=30 হলে, x-এর মান হিসাব করে লিখি।
43. x, y-এর সঙ্গে সরলভেদে এবং z-এর সঙ্গে ব্যস্তভেদে আছে। y=5 ও z=9 হলে x= \(\frac{1}{6}\) হয়। x, y ও z-এর মধ্যে সম্পর্ক নির্ণয় করি এবং y=6 ও z= \(\frac{1}{5}\) হলে, x-এর মান হিসাব করে লিখি।
44. PQRS বৃত্তস্থ চতুর্ভুজের PQ, SR বাহু দুটি বর্ধিত করায় T বিন্দুতে মিলিত হলো। বৃত্তের কেন্দ্র O; \(\angle\)POQ=110°, \(\angle\)QOR= 60°, \(\angle\)ROS = 80° হলে \(\angle\)RQS ও \(\angle\)QTR-এর মান হিসাব করে লিখি।
45. সরল করি: \(\cfrac{x+\sqrt{x^2-1}}{x-\sqrt{x^2-1}}+\cfrac{x-\sqrt{x^2-1}}{x+\sqrt{x^2-1}}\) সরলফল 14 হলে, \(x\) এর মান কী কী হবে হিসাব করে লিখি ।
46. দুটি কোণের সমষ্টি 135° এবং তাদের অন্তর \(\cfrac{π}{12}\) হলে, কোণ দুটির ষষ্টিক ও বৃত্তীয় মান হিসাব করে লিখি।
47. একটি ত্রিভুজের কোণ তিনটির অনুপাত 2:3:4 হলে, ত্রিভুজটির বৃহত্তম কোণটির বৃত্তীয় মান হিসাব করে লিখি।
48. একটি বৃত্তের অসমান দৈর্ঘ্যের দুটি চাপ কেন্দ্রে যে কোণ ধারণ করে আছে তার অনুপাত 5:2 এবং দ্বিতীয় কোণটির ষষ্টিক মান 30° হলে, প্রথম কোণটির ষষ্টিক মান ও বৃত্তীয় মান হিসাব করে লিখি।
49. কোনো চতুর্ভুজের তিনটি কোণের পরিমাপ যথাক্রমে, \(\cfrac{\pi}{3}\) ,\(\cfrac{5\pi}{6}\) ও 90° হলে, চতুর্থ কোণটির ষষ্টিক ও বৃত্তীয় মান হিসাব করে লিখি।
50. যদি \(x=2, y=3\) এবং \(z=6\) হয়, তবে, \(\cfrac{3√x}{√y+√z}-\cfrac{4√y}{√z+√x}+\cfrac{√z}{√x+√y}\) -এর মান হিসাব করে লিখি ।
51. \(k\) -এর কোন মানের জন্য \(7x^2+kx-3=0\) দ্বিঘাত সমীকরণের একটি বীজ \(\cfrac{2}{3}\) হবে হিসাব করে লিখি ।
52. \(k\) -এর কোন মানের জন্য \(x^2+3ax+k=0\) দ্বিঘাত সমীকরণের একটি বীজ \(-a\) হবে হিসাব করে লিখি ।
53. দুটি স্থানের মধ্যে দূরত্ব 200 কিমি; একস্থান হতে অপর স্থানে মোটর গাড়িতে যেতে যে সময় লাগে জিপগাড়িতে যেতে তার চেয়ে 2 ঘন্টা সময় কম লাগে । মোটর গাড়ি অপেক্ষা জিপ গাড়ির গতিবেগ ঘন্টায় 5 কিমি বেশি হলে, মোটর গাড়ির গতিবেগ হিসাব করে লিখি ।
54. \(5x^2+2x-7=0\) এই সমীকরণে শ্রীধর আচার্যের সূত্র প্রয়োগ করে \(x=\cfrac{k±12}{10}\) পাওয়া গেলে \(k\) এর মান কী হবে হিসাব করে লিখি ।
55. আমাদের পাড়ায় একটি বর্গক্ষেত্রাকার পার্ক আছে। ওই পার্কের একটি বাহুর দৈর্ঘ্যের থেকে 5 মিটার বেশি দৈর্ঘ্য বিশিষ্ট ও ওই পার্কের বাহুর দৈর্ঘ্য থেকে 3 মি. কম প্রস্থবিশিষ্ট একটি আয়তক্ষেত্রাকার পার্কের ক্ষেত্রফল ওই বর্গক্ষেত্রাকার পার্কের ক্ষেত্রফলের দ্বিগুণ অপেক্ষা 78 বর্গ মিটার কম হলে বর্গক্ষেত্রাকার পার্কের বাহুর দৈর্ঘ্য হিসাব করে লিখি ।
56. যদি \(5x^2+13x+k=0\) দ্বিঘাত সমীকরণের বীজদ্বয় একটি অপরটির অনোন্যক হয়, তবে, \(k\)-এর মান হিসাব করে লিখি ।
57. রেখাদিদি তার সঞ্চিত অর্থের 10000 টাকা দুটি আলাদা ব্যাংকে ভাগ করে একই সময়ে জমা দিলেন। একটি ব্যাংকের বার্ষিক সরল সুদের হার 6% এবং অন্য ব্যাংকটির বার্ষিক সরল সুদের হার 7%; 2 বছর পর তিনি যদি সুদ বাবদ মোট 1280 টাকা পান, তাহলে তিনি কোন ব্যাংকে কত টাকা জমা দিয়েছিলেন হিসাব করে লিখি।
58. O কেন্দ্রীয় বৃত্তে 6 সেমি ও 8 সেমি দৈর্ঘ্যের দুটি জ্যা । যদি ছোটো দৈর্ঘ্যের জ্যাটির বৃত্তের কেন্দ্র থেকে দূরত্ব 4 সেমি হয়, তাহলে অপর জ্যাটির কেন্দ্র থেকে দূরত্ব কত তা হিসাব করে লিখি ।
59. পাশের O কেন্দ্রীয় বৃত্তের ছবিতে OP\(\bot\)AB; AB=6 সেমি এবং PC=2 সেমি হলে, বৃত্তের ব্যাসার্ধের দৈর্ঘ্য হিসাব করে লিখি।
60. O কেন্দ্রীয় বৃত্তের 10 সেমি ও 24 সেমি দৈর্ঘ্যের দুটি সমান্তরাল জ্যা AB এবং CD কেন্দ্রের বিপরীত পার্শ্বে অবস্থিত। যদি AB ও CD-জ্যা দুটির মধ্যে দূরত্ব 17 সেমি হয়, তবে হিসাব করে বৃত্তের ব্যাসার্ধের দৈর্ঘ্য লিখি ।
61. একটি সমকোণী চৌপলাকার ঘরের দৈর্ঘ্য, প্রস্থ ও উচ্চতা যথাক্রমে 5 মি, 4 মি ও 3 মি হলে, ওই ঘরে সবচেয়ে লম্বা যে দন্ড রাখা যাবে তার দৈর্ঘ্য হিসাব করে লিখি।
62. একটি ঘনকের একটি তলের ক্ষেত্রফল 64 বর্গমিটার হলে, ঘনকটির আয়তন হিসাব করে লিখি।
63. একটি ঘনকের কর্ণের দৈর্ঘ্য 4√3 সেমি হলে, ঘনকটির সমগ্রতলের ক্ষেত্রফল হিসাব করে লিখি ।
64. একটি ঘনকের ধারগুলির দৈর্ঘ্যের সমষ্টি 60 সেমি হলে, ঘনকটির ঘনফল হিসাব করে লিখি ।
65. একটি ঘনকের প্রতিটি বাহুকে 50% কমানো হল। মূল ঘনক ও পরিবর্তিত ঘনকের ঘনফলের অনুপাত কি হবে হিসাব করে লিখি ।
66. একটি সমকোণী চৌপল আকারের বাক্সের দৈর্ঘ্য, প্রস্থ ও উচ্চতার অনুপাত 3:2:1 এবং উহার আয়তন 384 ঘনসেমি হলে, বাক্সটির সমগ্র তলের ক্ষেত্রফল কত হবে হিসাব করে লিখি ।
67. একটি চা-এর বাক্সের ভেতরের দৈর্ঘ্য প্রস্থ ও উচ্চতা যথাক্রমে 7.5 ডেসিমি, 6 ডেসিমি এবং 5.4 ডেসিমি । চা ভর্তি বাক্সটির ওজন 52 কিগ্রা 350 গ্রাম। কিন্তু খালি অবস্থায় বাক্সটির ওজন 3.75 কিগ্রা হলে, 1 ঘন ডেসিমি চা-এর ওজন কত হবে তা হিসাব করে লিখি।
68. চাঁদমারির রাস্তাটি উঁচু করতে হবে । তাই রাস্তার দুপাশে 30 টি সমান গভীর ও সমান মাপের আয়তঘনাকার গর্ত খুঁড়ে সেই মাটি দিয়ে রাস্তাটি উঁচু করা হয়েছে। যদি প্রতিটি গর্তের দৈর্ঘ্য ও প্রস্থ যথাক্রমে 14 মি এবং 8 মি হয় এবং রাস্তাটি তৈরি করতে মোট 2520 ঘনমিটার মাটি লেগে থাকে, তবে প্রতিটি গর্তের গভীরতা হিসাব করে লিখি ।
69. এক গ্রোস দেশলাই বাক্সের একটি প্যাকেটের দৈর্ঘ্য, প্রস্থ ও উচ্চতা যথাক্রমে 2.8 ডেসিমি, 1.5 ডেসিমি ও 0.9 ডেসিমি হলে, একটি দেশলাই বাক্সের আয়তন কত হবে হিসাব করি। [এক গ্রোস=12 ডজন] কিন্তু যদি একটি দেশলাই বাক্সের দৈর্ঘ্য 5 সেমি এবং প্রস্থ 3.5 সেমি হয়, তবে তার উচ্চতা কত হবে হিসাব করে লিখি ।
70. বাড়ির তিনটি কেরোসিন তেলের ড্রামে যথাক্রমে 800 লিটার, 725 লিটার এবং 575 লিটার তেল ছিল। ওই তিনটি ড্রামের তেল একটি আয়তঘনাকার পাত্রে ঢালা হল এবং এতে পাত্রে তেলের গভীরতা 7 ডেসিমি হল। ওই আয়তঘনাকার পাত্রের দৈর্ঘ্য ও প্রস্থের অনুপাত 4:3 হলে, পাত্রের দৈর্ঘ্য ও প্রস্থ হিসাব করে লিখি । যদি ওই আয়তঘনাকার পাত্রের গভীরতা 5 ডেসিমিটার হতো, তবে 1620 লিটার তেল ঐ পাত্রে রাখা যেত কিনা হিসাব করে দেখি ।
71. একটি ঘরের দুটি সংলগ্ন দেওয়ালের দৈর্ঘ্য যথাক্রমে 12 মি. এবং 8 মি. । ঘরটির উচ্চতা 4 মি. হলে, ঘরটির মেঝের ক্ষেত্রফল কত তা হিসাব করে লিখি ।
72. একটি আয়তঘনাকৃতি ঘরের দৈর্ঘ্য, প্রস্থ এবং উচ্চতা যথাক্রমে a, b এবং c একক এবং a+b+c = 25, ab+bc+ca = 240.5 হলে, ঘরের মধ্যে যে বৃহত্তম দৈর্ঘ্যের দণ্ডটি রাখা যাবে তার দৈর্ঘ্য কত হবে হিসাব করে লিখি।।
73. একটি আয়তঘনের মাত্রাগুলি যথাক্রমে 12 সেমি., 6 সেমি. ও 3 সেমি.। ওই আয়তঘনের সমান আয়তনের একটি ঘনকের প্রতিটি ধারের দৈর্ঘ্য কত হবে হিসাব করে লিখি।।
74. যদি পাম্পটি ঘণ্টায় 37400 লিটার জলভর্তি করতে পারত, তাহলে 18মিটার দীর্ঘ ও 11 মিটার প্রস্থবিশিষ্ট আয়তাকার জলাধারে 17 ডেসিমিটার উচ্চতার জল ভরার জন্য পাম্পটিকে কতক্ষণ চালাতে হতাে হিসাব করে লিখি।
75. তিনটি ক্রমিক সমানুপাতী সংখ্যা দিয়ে কটি ক্রমিক সমানুপাত গঠন করা যাবে হিসাব করে লিখি।
76. 6,15,20 ও 43-এর প্রত্যেকটির সঙ্গে কত যোগ করলে যোগফলগুলি সমানুপাতী হবে হিসাব করে লিখি।
77. যদি বার্ষিক 10% হারে কিছু টাকার 3 বছরের চক্রবৃদ্ধি সুদ ও সরল সুদের অন্তর 930 টাকা হয়, তবে ওই টাকার পরিমান কত হিসাব করে লিখি ।
78. কোনো মূলধনের 2 বছরের সুদ ও চক্রবৃদ্ধি সুদ যথাক্রমে 8400 টাকা এবং 8652 টাকা হলে মূলধন ও বার্ষিক সুদের হার হিসাব করে লিখি ।
79. সর্বশিক্ষা অভিযানের ফলে বিদ্যালয় ছেড়ে চলে যাওয়া শিক্ষার্থীদের পুনরায় বিদ্যালয়ে ভর্তির ব্যবস্থা করা হয়েছে। এরূপ শিক্ষার্থীদের ভর্তির হার প্রতি বছর তার পূর্ববর্তী বছর অপেক্ষা 5% বৃদ্ধি পেয়েছে। কোনো এক জেলায় বর্তমান বছরে যদি 3528 জন এরূপ শিক্ষার্থী নতুন করে ভর্তি হয়ে থাকে, তবে 2 বছর পূর্বে এরূপ কতজন শিক্ষার্থী ভর্তি হয়েছিল, তা হিসাব করে লিখি ।
80. একটি মৎস্যজীবী সমবায় সমিতি উন্নত প্রথায় মাছ চাষ করার জন্য এরূপ একটি পরিকল্পনা গ্রহন করেছে যে কোনো বছরের মাছের উৎপাদন পূর্ববর্তী বছরের তুলনায় 10% বৃদ্ধি করবে। বর্তমান বছরে যদি ওই সমবায় সমিতি 400 কুইন্টাল মাছ উৎপাদন করে, তবে 3 বছর পরে সমবায় সমিতির মাছের উৎপাদন কত হবে, তা হিসাব করে লিখি ।
81. কোনো একটি পরিবার আজ থেকে 3 বছর পূর্বে বিদ্যুৎ অপচয় বন্ধ করতে ইলেকট্রিক বিলের খরচ পূর্ববর্তী বছরের তুলনায় 5% হ্রাস করার পরিকল্পনা গ্রহন করে। 3 বছর পূর্বে ওই পরিবারকে বছরে 4000 টাকার ইলেকট্রিক বিল দিতে হয়েছিল । বর্তমান বছরে ইলেকট্রিক বিলে বিদ্যুৎ খরচ কত হবে, তা হিসাব করে লিখি ।
82. শোভনবাবুর ওজন 80 কিগ্রা.। ওজন কমানোর জন্য তিনি নিয়মিত হাঁটা শুরু করলেন। তিনি ঠিক করলেন যে প্রতি বছরের প্রারম্ভে যা ওজন থাকবে তার 10% হ্রাস করবেন। 3 বছর পরে শোভনবাবুর ওজন কত হবে, তা হিসাব করে লিখি।
83. ধূমপান বিরোধী প্রচারের ফলে প্রতি বছর ধূমপায়ীর সংখ্যা \( 6 \cfrac{1}{4}\)% হারে হ্রাস পায় । বর্তমানে কোনো শহরে 33750 জন ধূমপায়ী থাকলে, 3 বছর পুর্বে ওই শহরে কত জন ধূমপায়ী ছিল, তা হিসাব করে লিখি ।
84. কোনাে মূলধনের 2 বছরের সরল সুদ ও চক্রবৃদ্ধি সুদ যথাক্রমে 840 টাকা এবং 869.40 টাকা হলে, ওই মূলধনের পরিমাণ ও বার্ষিক সুদের হার হিসাব করে লিখি।
85. কোনাে রাজ্যে পথ নিরাপত্তা সংক্রান্ত প্রচারাভিযানের মাধ্যমে পথ দুর্ঘটনা প্রতি বছর তার পূর্ব । বছরের তুলনায় 10% হ্রাস পেয়েছে। বর্তমান বছরে ওই রাজ্যে যদি 2916 টি পথ দুর্ঘটনা ঘটে তবে 3 বছর । পূর্বে ওই রাজ্যে দুর্ঘটনার সংখ্যা কত ছিল, তা হিসাব করে লিখি।
86. 2, 4, 6 ও 10 -এর প্রত্যেকের সঙ্গে কোন সংখ্যা যােগ করলে যােগফলগুলি সমানুপাতী হবে হিসাব করে লিখি।
87. একমুখ খোলা একটি লম্ববৃত্তাকার পাত্রের সমগ্রতলের ক্ষেত্রফল 2002 বর্গ সেমি. । পাত্রটির ভুমির ব্যাসের দৈর্ঘ্য 14 সেমি. হলে, পাত্রটিতে কত লিটার জল ধরবে হিসাব করে লিখি ।
88. যদি 14 সেমি. ব্যাসের পাইপযুক্ত একটি পাম্পসেট মিনিটে 2500 মিটার জলসেচ করতে পারে, তাহলে ওই পাম্পটি 1 ঘন্টায় কত কিলো লিটার জলসেচ করবে, হিসাব করে লিখি । [1 লিটার=1 ঘন ডেসিমি.]
89. একটি লম্ববৃত্তাকার স্তম্ভের বক্রতলের ক্ষেত্রফল 264 বর্গমিটার এবং আয়তন 924 ঘনমিটার হলে, এই স্তম্ভের ব্যাসের দৈর্ঘ্য ও উচ্চতা হিসাব করে লিখি।
90. 9 মিটার উচ্চতাবিশিষ্ট একটি লম্ব বৃত্তাকার চোঙাকৃতি ট্যাঙ্ক জলপূর্ণ আছে। 6 সেমি. দৈর্ঘ্যের ব্যাসের একটি পাইপ দিয়ে মিনিটে 225 মিটার বেগে জল বের হয়, তাহলে 36 মিনিটে ট্যাঙ্কটির সমস্ত জল বেরিয়ে যায় । ট্যাঙ্কটির ব্যাসের দৈর্ঘ্য হিসাব করে লিখি ।
91. একটি গোলকের ব্যাসার্ধের দৈর্ঘ্য 10.5 সেমি হলে, তার সমগ্রতলের ক্ষেত্রফল হিসাব করে লিখি।
92. স্কুলে সটপাট খেলার জন্য যে বলটি ব্যবহার করা হয় তার ব্যাসের দৈর্ঘ্য 7 সেমি. হলে, বলটিতে কত ঘন সেমি. লোহা আছে হিসাব করে লিখি ।
93. পাশের চিত্রে ΔABC-এর পরিবৃত্তের কেন্দ্র O এবং \(\angle\)AOC = 110°; \(\angle\)ABC-এর মান হিসাব করে লিখি।
94. পাশের চিত্রে O কেন্দ্রীয় বৃত্তের \(\angle\)AOD = 40° এবং \(\angle\)ACB = 35°; \(\angle\)BCO ও \(\angle\)BOD-এর মান হিসাব করে লিখি ও উত্তরের সপক্ষে যুক্তি দিই।
95. পাশের চিত্রে AOB বৃত্তের ব্যাস এবং বৃত্তের কেন্দ্র। OCব্যাসার্ধ AB-এর উপর লম্ব। যদি উপচাপ CB-এর উপর কোনো বিন্দু P হয়, তবে \(\angle\)BAC ও \(\angle\)APC-এর মান হিসাব করে লিখি।
96. 6 মিটার লম্বা একটি লম্ববৃত্তাকার চোঙাকৃতি লােহার ফাপা পাইপের ভিতরের ও বাইরের ব্যাসের দৈর্ঘ্য যথাক্রমে 3.5 সেমি. এবং 4.2 সেমি. হলে, পাইপটিতে কত লােহা আছে তা হিসাব করে লিখি। এক ঘন ডেসিমি. লােহার ওজন 5 কিগ্রা. হলে, পাইপটির ওজন হিসাব করে লিখি।
97. 5 মিটার উচ্চতাবিশিষ্ট একটি লম্ববৃত্তাকার চোঙাকৃতি ট্যাঙ্ক জলপূর্ণ আছে। | 8 সেমি. দৈর্ঘ্যের ব্যাসের একটি পাইপ দিয়ে যদি মিনিটে 225 মিটার বেগে জল বের করা হয়, তাহলে 45 মিনিটে ট্যাঙ্কটির সমস্ত জল বেরিয়ে যায়। ট্যাঙ্কটির ব্যাসের দৈর্ঘ্য হিসাব করে লিখি।
98. ABCD একটি বৃত্তস্থ চতুর্ভুজ এবং O ওই বৃত্তের কেন্দ্র। যদি \(\angle\)COD = 120° এবং \(\angle\)BAC = 30° হয়, তবে \(\angle\)BOC ও \(\angle\)BCD-এর মান কত হবে, হিসাব করে লিখি।
99. দুটি গােলকাকার ঘনবস্তুর সমগ্রতলের ক্ষেত্রফলের অনুপাত 1:4 হলে, তাদের আয়তনের অনুপাত কী হবে হিসাব করে লিখি।
100. 1 সেমি. ও 6 সেমি. দৈর্ঘ্যের ব্যাসার্ধবিশিষ্ট দুটি নিরেট গােলককে গলিয়ে 1 সেমি পুরু ফাপা গােলকে পরিণত করা হলে, নতুন গােলকটির বাইরের বক্রতলের ক্ষেত্রফল হিসাব করে লিখি।
101. একটি হস্টেলের ব্যয় আংশিক ধ্রুবক ও আংশিক ওই হস্টেলবাসী লােকসংখ্যার সঙ্গে সরলভেদে আছে। লােকসংখ্যা 120 হলে ব্যয় 2000 টাকা হয় এবং লােকসংখ্যা 100 হলে ব্যয় 1700 টাকা হয়। ব্যয় 1880 টাকা হলে লােকসংখ্যা কত হবে হিসাব করে লিখি।
102. পাশের চিত্রের O কেন্দ্রীয় বৃত্তের দুটি ব্যাসার্ধ OA ও OB-এর মধ্যবর্তী কোণ 130°; A ও B বিন্দুতে অঙ্কিত স্পর্শদ্বয় T বিন্দুতে ছেদ করে। \(\angle\)ATB এবং \(\angle\)ATO-এর মান হিসাব করে লিখি।
103. লম্ব বৃত্তাকার শঙ্কু আকৃতির একটি তাবুর ভূমিতলের ক্ষেত্রফল 13.86 বর্গ মিটার। তবুটি তৈরি করতে 5775 টাকা মূল্যের একটি ত্রিপল লাগে এবং এক বর্গমিটার ত্রিপলের মূল্য 150 টাকা হলে, তবুটির উচ্চতা নির্ণয় করি। তবুটিতে কত লিটার বায়ু আছে হিসাব করে লিখি।
104. একটি ঘূর্ণায়মান রশ্মি কোনাে একটি অবস্থান থেকে ঘড়ির কাঁটার বিপরীত দিকে দু-বার পূর্ণ আবর্তনের পরেও আরও 30° কোণ আবর্তন করে। ত্রিকোণমিতিক পরিমাপে কোণটির যষ্টিক ও বৃত্তীয় মান কত হবে হিসাব করে লিখি।
105. একটি ত্রিভুজের কোণগুলির অনুপাত 2:5:3; ত্রিভুজটির ক্ষুদ্রতম কোণটির বৃত্তীয় মান হিসাব করে লিখি।
106. যদি শুভ-র আঁকা বৃত্তের ব্যাসার্ধের দৈর্ঘ্য 7 সেমি. হয়, তবে ওই বৃত্তে 5.5 সেমি. দৈর্ঘ্যের বৃত্তচাপ দ্বারা কেন্দ্রস্থ কোণটির বৃত্তীয় মান কত হবে হিসাব করে লিখি।
107. যদি একটি 18 মিটার উঁচু পাঁচতলা বাড়ির ছাদ থেকে দেখলে একটি মনুমেন্টের চূড়ার উন্নতি কোণ 45° এবং মনুমেন্টের পাদদেশের অবনতি কোণ 60° হয়, তাহলে মনুমেন্টের উচ্চতা হিসাব করে লিখি। [\(\sqrt3\) =1.732 (প্রায়)]
108. একটি পাখি ভূমিতলের সঙ্গে সমান্তরাল রেখায় 200 মিটার উঁচু দিয়ে উত্তর থেকে দক্ষিণদিকে যাচ্ছিল। মাঠের মাঝখানে দাঁড়িয়ে সুশােভন প্রথমে পাখিটিকে উত্তরদিকে 30° কোণে দেখতে পেল। 3 মিনিট পরে আবার দক্ষিণদিকে 45° কোণে দেখতে পেল। আসন্ন পূর্ণসংখ্যায় কিলােমিটারে পাখিটির গতিবেগ ঘণ্টায় কত ছিল হিসাব করে লিখি। [\(\sqrt3\) = 1.732 (প্রায়)]।
109. 150 মি. লম্বা সুতো দিয়ে একটি মাঠ থেকে ঘুড়ি ওড়ানো হয়েছে। ঘুড়িটি যদি অনুভূমিক রেখার সঙ্গে 60° কোণ করে উড়তে থাকে, তাহলে ঘুড়িটি মাঠ থেকে কত উঁচুতে রয়েছে হিসাব করে লিখি।
110. আমাদের পাড়ায় রাস্তার দু-পাশে পরস্পর বিপরীত দিকে দুটি বাড়ি আছে। প্রথম বাড়ির দেয়ালের গোড়া থেকে 6 মিটার দূরে একটি মই-এর গোড়া রেখে যদি মইটিকে দেয়ালে ঠেকানো যায়, তবে তা অনুভূমিক রেখার সঙ্গে 30° কোণ উৎপন্ন করে। কিন্তু মইটিকে যদি একই জায়গায় রেখে দ্বিতীয় বাড়ির দেয়ালে লাগানো যায়, তাহলে অনুভূমিক রেখার সঙ্গে 60° কোণ উৎপন্ন করে। (i) মইটির দৈর্ঘ্য নির্ণয় করি। (ii) দ্বিতীয় বাড়ির দেয়ালের গোড়া থেকে মইটির গোড়া কত দূরে রয়েছে হিসাব করে লিখি। (iii) রাস্তাটি কত চওড়া নির্ণয় করি। (iv) দ্বিতীয় বাড়ির কত উঁচুতে মইটির অগ্রভাগ স্পর্শ করবে নির্ণয় করি।
111. একটি লাইট হাউস থেকে তার সঙ্গে একই সরলরেখায় অবস্থিত দুটি জাহাজের মাস্তুলের গোড়ার অবনতি কোণ যদি যথাক্রমে 60° ও 30° হয় এবং কাছের জাহাজের মাস্তুল যদি লাইট হাউস থেকে 150 মিটার দূরত্বে থাকে, তাহলে দূরের জাহাজের মাস্তুল লাইটি হাউস থেকে কত দূরত্বে রয়েছে এবং লাইট হাউসটির উচ্চতা হিসাব করে লিখি।
112. একটি পাঁচতলা বাড়ির ছাদের কোনো বিন্দু থেকে দেখলে মনুমেন্টের চূড়ার উন্নতি কোণ ও গোড়ার অবনতি কোণ যথাক্রমে 60° ও 30°; বাড়িটির উচ্চতা 16 মিটার হলে, মনুমেন্টের উচ্চতা এবং বাড়িটি মনুমেন্ট থেকে কত দূরে অবস্থিত হিসাব করে লিখি।
113. দুটি স্তম্ভের উচ্চতা যথাক্রমে 180 মিটার ও 60 মিটার। দ্বিতীয় স্তম্ভটির গোড়া থেকে প্রথমটির চূড়ার উন্নতি কোণ 60° হলে, প্রথমটির গোড়া থেকে দ্বিতীয়টির চূড়ার উন্নতি কোণ হিসাব করে লিখি।
114. \(\sin θ=\cfrac{4}{5}\) হলে, \(\cfrac{ cosecθ}{1+\cot θ}\) -এর মান নির্ণয় করে লিখি।
115. আমাদের বাড়ির জানালায় একটি মই ভূমির সঙ্গে 60° কোণে রাখা আছে। মইটি 2√3 মিটার লম্বা হলে আমাদের ওই জানালাটি ভূমি থেকে কত উপরে আছে ছবি এঁকে হিসাব করে লিখি।
116. সোমা একটি সমকোণী ত্রিভুজ ABC এঁকেছে যার ∠ABC=90°, AB=24 সেমি. এবং BC=7 সেমি.। হিসাব করে sinA, cosA, tanA ও cosecA-এর মান লিখি।
117. যদি \(sin C= \cfrac{2}{3}\) হয়, তবে \(cos C × cosec C\)-এর মান হিসাব করে লিখি।
118. 10 সেমি. বাহুবিশিষ্ট কোনো রম্বসের একটি কর্ণের দৈর্ঘ্য 12 সেমি. হলে, রম্বসটির অপর কর্ণের দৈর্ঘ্য হিসাব করে লিখি।
119. আনোয়ারদের বাড়ির সামনে একটি নিরেট লোহার স্তম্ভ আছে যার নীচের অংশ লম্ব বৃত্তাকার চোঙ আকৃতির এবং উপরের অংশ শঙ্কু আকৃতির। এদের ভূমিতলের ব্যাসের দৈর্ঘ্য 20 সেমি., চোঙাকৃতি অংশের উচ্চতা 2.8 মিটার এবং শঙ্কু আকৃতি অংশের উচ্চতা 42 সেমি.। 1 ঘন সেমি. লোহার ওজন 7.5 গ্রাম হলে, লোহার স্তম্ভের ওজন কত হবে তা হিসাব করে লিখি।
120. 6 ডেসিমি. দৈর্ঘ্যের ব্যাসের একটি নিরেট রৌপ্য গোলক গলিয়ে 1 ডেসিমি. লম্বা একটি নিরেট লম্ব বৃত্তাকার দণ্ড তৈরি করা হলে, দণ্ডটির ব্যাসের দৈর্ঘ্য হিসাব করে লিখি।
121. 1 সেমি. পুরু সিসার পাতের তৈরি একটি ফাঁপা গোলকের বাহিরের ব্যাসার্ধের দৈর্ঘ্য 6 সেমি.। গোলকটি গলিয়ে 2 সেমি. দৈর্ঘ্যের ব্যাসার্ধের একটি নিরেট লম্ব বৃত্তাকার দণ্ড তৈরি করা হলে, দণ্ডটির দৈর্ঘ্য কত হবে হিসাব করে লিখি।
122. একটি নিরেট লম্ব বৃত্তাকার শঙ্কু এবং একটি নিরেট গোলকের ব্যাসার্ধের দৈর্ঘ্য সমান এবং আয়তন সমান। গোলকের ব্যাসের দৈর্ঘ্য এবং শঙ্কুর উচ্চতা অনুপাত কত তা হিসাব করে লিখি।
123. যদি AP = QC, AB-এর দৈর্ঘ্য 12 একক এবং AQ-এর দৈর্ঘ্য 2 একক হয়, তবে CQ-এর দৈর্ঘ্য কত হবে, হিসাব করে লিখি।
124. কোনো লম্ব বৃত্তাকার শঙ্কুর আয়তন 100π ঘন সেমি. এবং উচ্চতা 12 সেমি. হলে, শঙ্কুর তির্যক উচ্চতা হিসাব করে লিখি।
125. বছরের প্রথমে প্রদীপবাবু ও আমিনাবিবি যথাক্রমে 24000 টাকা ও 30000 টাকা নিয়ে ব্যাবসা শুরু করেন। পাঁচ মাস পর প্রদীপবাবু আরও 4000 টাকা মূলধন দেন। বছরের শেষে 27716 টাকা লাভ হলে, কে, কত টাকা লভ্যাংশ পাবেন হিসাব করে লিখি।
126. বছরের শুরুতে শ্রীকান্ত ও সৈফুদ্দিন 2,40,000 টাকা ও 3,00,000 টাকা দিয়ে একটি মিনিবাস ক্রয় করে চালাতে থাকেন। চার মাস পর তাদের বন্ধু পিটার 81,000 টাকা নিয়ে তাদের সঙ্গে যোগ দিলে শ্রীকান্ত ও সৈফুদ্দিন তাদের মূলধনের অনুপাতে সেই টাকা তুলে নেন। বছরের শেষে 39150 টাকা লাভ হলে, লভ্যাংশ থেকে কে, কত টাকা পাবেন হিসাব করে লিখি।
127. কুমারটুলির তিনজন মৃৎশিল্পী একটি সমবায় ব্যাংক থেকে যৌথভাবে 100000 টাকা ধার করে মৃৎশিল্পের একটি কারখানা স্থাপন করেন। তারা এই চুক্তি করেন যে প্রতি বছর ব্যাংকের কিস্তি 28100 টাকা দেওয়ার পর বাকি লাভের অর্ধেক কাজের দিনের অনুপাতে এবং বাকি অর্ধেক সমান ভাগে ভাগ করে নেবেন। গত বছর তারা যথাক্রমে 300 দিন, 275 দিন ও 350 দিন কাজ করেছেন এবং মোট লাভ হয়েছে 139100 টাকা। কে, কত টাকা পেয়েছিলেন হিসাব করে লিখি।
128. দুই বন্ধু যথাক্রমে 40000 টাকা ও 50000 টাকা দিয়ে একটি যৌথ ব্যবসা শুরু করেন। তাদের মধ্যে একটি চুক্তি হয় যে, লাভের 50% নিজেদের মধ্যে সমান ভাগে এবং লাভের অবশিষ্টাংশ মূলধনের অনুপাতে ভাগ হবে। প্রথম বন্ধুর লভ্যাংশের পরিমাণ যদি দ্বিতীয় বন্ধুর লভ্যাংশ অপেক্ষা 800 টাকা কম হয়, তবে প্রথম বন্ধুর লভ্যাংশের পরিমাণ হিসাব করে লিখি।
129. পূজা, উত্তম ও মেহের যথাক্রমে 5000 টাকা, 7000 টাকা ও 10000 টাকা মূলধন নিয়ে অংশীদারি কারবার এই শর্তে শুরু করে যে (i) কারবার চালানোর মাসিক খরচ 125 টাকা, (ii) হিসাবপত্র রাখার জন্য পূজা ও উত্তম প্রত্যেকে মাসিক 200 টাকা পাবে। বছরের শেষে 6960 টাকা লাভ হলে, তা থেকে কে, কত টাকা পাবে হিসাব করে লিখি।
130. পাশের ছবির PQRS বৃত্তস্থ চতুর্ভুজের কর্ণদ্বয় পরস্পরকে X বিন্দুতে এমনভাবে ছেদ করেছে যে ∠PRS = 65° এবং ∠RQS = 45°; ∠SQP ও ∠RSP-এর মান হিসাব করে লিখি।
131. ABCD বৃত্তস্থ চতুর্ভুজের AB বাহুকে X বিন্দু পর্যন্ত বর্ধিত করলাম এবং মেপে দেখছি ∠XBC = 82° এবং ∠ADB = 47°; ∠BAC-এর মান হিসাব করে লিখি।
132. যদি \(x=2, y=3\) এবং \(z=6\) হয়, তবে, \(\cfrac{3√x}{√y+√z}-\cfrac{4√y}{√z+√x}+\cfrac{√z}{√x+√y}\) -এর মান হিসাব করে লিখি ।
133. একটি ত্রিভুজের একটি কোণের পরিমাপ \(65°\) এবং দ্বিতীয়টির পরিমাপ \(\cfrac{π}{12}\) ; তৃতীয় কোণটির ষষ্টিক ও বৃত্তীয় মান হিসাব করে লিখি।
134. একটি বৃত্তের ব্যাসার্ধের দৈর্ঘ্য 28 সেমি.। এই বৃত্তে 5.5 সেমি. দৈর্ঘ্যের বৃত্তচাপ দ্বারা ধৃত কেন্দ্রীয় কোণটির বৃত্তীয় মান হিসাব করে লিখি।
135. একটি ঘূর্ণায়মান রশ্মি \(-5\cfrac{1}{12}\pi \) কোণ উৎপন্ন করেছে। রশ্মিটি কোনদিকে কতবার পূর্ণ আবর্তন করেছে এবং তারপরে আরও কত ডিগ্রি কোণ উৎপন্ন করেছে তা হিসাব করে লিখি।
136. নীচের ত্রিভুজ জোড়া দেখি ও ∠A-এর মান হিসাব করে লিখি।
137. XYZ সমবাহু ত্রিভুজটি একটি বৃত্তে অন্তর্লিখিত। বৃত্তের কেন্দ্র O হলে \(\angle\)YOZ -এর মান কত?
(a) 60° (b) 30° (c) 90° (d) 120°
138. ∆ABC-এর BC বাহুর সমান্তরাল সরলরেখা AB এবং AC বাহুকে যথাক্রমে X এবং Y বিন্দুতে ছেদ করে। AX=2.4 সেমি; AY=3.2 সেমি এবং YC=4.8 সেমি হলে AB-এর দৈর্ঘ্য নির্ণয় করো।
139. ABC ত্রিভুজের BC বাহুর সমান্তরাল সরলরেখা AB ও AC কে যথাক্রমে D ও E বিন্দুতে ছেদ করেছে। AE=2AD হলে DB:EC এর মান হিসাব করো। Madhyamik 2016
140. 6 মিটার লম্বা একটি লম্ববৃত্তাকার চোঙাকৃতি লােহার ফাপা পাইপের ভিতরের ও বাইরের ব্যাসের দৈর্ঘ্য যথাক্রমে 3.5 সেমি. এবং 4.2 সেমি. হলে, পাইপটিতে কত লােহা আছে তা হিসাব করে লিখি। এক ঘন ডেসিমি. লােহার ওজন 5 কিগ্রা. হলে, পাইপটির ওজন কত? Madhyamik 2009
141. ধূমপান বিরোধী প্রচারের ফলে প্রতি বছর ধূমপায়ীর সংখ্যা \( 6 \cfrac{1}{4}\)% হারে হ্রাস পায় । বর্তমানে কোনো শহরে \(33750\) জন ধূমপায়ী থাকলে, \(3\) বছর পুর্বে ওই শহরে কত জন ধূমপায়ী ছিল, তা হিসাব করে লিখি ।
142. ফরিদাবিবি কয়েকটি বাক্সে কমলালেবু রাখতে গিয়ে দেখলেন যে তিনি যদি প্রত্যেকটি বাক্সে 20 টি কমলালেবু বেশি রাখেন তাহলে 3টি বাক্স কম লাগে। আবার তিনি যদি প্রত্যেকটি বাক্সে 5টি কমলালেবু কম রাখেন তাহলে 1টি বাক্স বেশি লাগে। সহসমীকরণ গঠন করে হিসাব করি ফরিদাবিবির কাছে কতগুলি কমলালেবু এবং কতগুলি বাক্স ছিল।
143. \(ax^2+bx+35=0\) সমীকরণের বীজদ্বয় -5 ও -7 হলে, \(a\) এবং \(b\) এর মান লিখি।
144. \(k\) এর মান কত হলে \(9x^2+3kx+4=0\) দ্বিঘাত সমীকরণের বীজদ্বয় বাস্তব ও সমান হবে লিখি ।
145. সমান ঘনত্বের একটি লম্ববৃত্তাকার কাঠের গুঁড়ির বক্রতলের ক্ষেত্রফল 440 বর্গডেসিমি। এক ঘনডেসিমি কাঠের ওজন 1.5 কিগ্রা. এবং গুঁড়িটির ওজন 9.24 কুইন্টাল হলে, গুঁড়িটির ব্যাসের দৈর্ঘ্য ও উচ্চতা হিসাব করে লেখাে।
146. একটি আয়তঘনের তল সংখ্যা \(x\) ধার সংখ্যা \(y\) শীর্ষবিন্দুর সংখ্যা \(z\) এবং কর্ণের সংখ্যা \(p\) হলে \(x+y+z+p\) -এর মান কত তা লিখি।
147. \(\triangle\)ABCএর অন্তর্বত্তের কেন্দ্র O বৃত্তটি AB, BC, CA বাহুকে যথাক্রমে P, Q, ও R বিন্দুতে স্পর্শ করে। যদি AP=4cm, BP=6cm, AC=12cm এবং BC=x cm হয়, তাহলে x এর মান নির্ণয় করাে।
148. \(x\) ডেসিমিটার গভীর একটি কূপ খনন করার জন্য মোট ব্যয়ের এক অংশ \(x\)-এর সঙ্গে সরলভেদে এবং অপর অংশ \(x^2\)-এর সঙ্গে সরলভেদে পরিবর্তিত হয়। যদি 100 ডেসিমিটার এবং 200 ডেসিমিটার কূপ খনন করার জন্য যথাক্রমে 5000 টাকা এবং 12000 টাকা ব্যয় হয়, তবে 250 ডেসিমিটার গভীর কূপ খননের জন্য কত ব্যয় হবে হিসাব করে লিখি।
149. ABCD একটি বৃত্তস্থ চতুর্ভুজ। \(\angle\)DAB এবং \(\angle\)BCD এর সমদ্বিখন্ডকদ্বয় বৃত্তকে যথাক্রমে X ও Y বিন্দুতে ছেদ করেছে। O বৃত্তটির কেন্দ্র হলে \(\angle\)XOY এর মান নির্ণয় করো। Madhyamik 2023
150. \(x^2+x+1=0, 1\) ও \(-1\)
151. \(8x^2+7x=0, 0\) ও \(-2\)
152. \(x+ \cfrac{1}{x}=\cfrac{13}{6} ,\cfrac{5}{6}\) ও \(\cfrac{4}{3}\)
153. \(x^2-√3 x-6=0,-√3\) ও \(2√3\)
154. দুটি ধনাত্মক অখন্ড সংখ্যার অন্তর 3 এবং তাদের বর্গের সমষ্টি 117; সংখ্যা দুটি হিসাব করে লিখি ।
155. অমিতাদের আয়তক্ষেত্রাকার জমির ক্ষেত্রফল 2000 বর্গমিটার এবং পরিসীমা 180 মিটার । অমিতাদের আয়তক্ষেত্রাকার জমির দৈর্ঘ্য ও প্রস্থ হিসাব করে লিখি ।
156. দুই অঙ্কের একটি সংখ্যার দশকের ঘরের অঙ্ক এককের ঘরের অঙ্ক অপেক্ষা 3 কম । সংখ্যাটি থেকে উহার অঙ্ক দুটির গুনফল বিয়োগ করলে বিয়োগফল 15 হয় । সংখ্যাটির একক ঘরের অঙ্ক হিসাব করে লিখি ।
157. আমাদের স্কুলের চৌবাচ্চায় দুটি নল আছে । নল দুটি দিয়ে চৌবাচ্চাটি \(11\frac{ 1}{9}\) মিনিটে পূর্ণ হয় । যদি নলদুটি আলাদাভাবে খোলা থাকে তবে চৌবাচ্চাটি ভর্তি করতে একটি নল অপর নলটি থেকে 5 মিনিট বেশি সময় নেয় । প্রত্যেকটি নল পৃথকভাবে চৌবাচ্চাটিকে কত সময়ে পূর্ণ করবে হিসাব করে লিখি ।
158. পর্ণা ও পীয়ূষ কোনো একটি কাজ একত্রে 4 দিনে সম্পন্ন করে । আলাদাভাবে একা কাজ করলে পর্ণার যে সময় লাগবে, পীয়ূষের তার চেয়ে 6 দিন বেশি সময় লাগবে । পর্ণা একাকী কতদিনে কাজটি সম্পন্ন করতে পারবে হিসাব করে লিখি ।
159. \(x^2-(2+b)x+6=0\) সমীকরণের একটি বীজ 2 হলে, অপর বীজটির মান লিখি।
160. \(2x^2+kx+4=0\) সমীকরণের একটি বীজ \(2\) হলে, অপর বীজটির মান লিখি।
161. \(ax^2+bx+35=0\) সমীকরণের বীজদ্বয় -5 ও -7 হলে, \(a\) এবং \(b\) এর মান লিখি।
162. সাথি একটি সমকোণী ত্রিভুজ অঙ্কন করেছে যার অতিভুজের দৈর্ঘ্য ক্ষুদ্রতম বাহুর দ্বিগুন অপেক্ষা 6 সেমি বেশি । যদি তৃতীয় বাহুর দৈর্ঘ্য অতিভুজের দৈর্ঘ্যের থেকে 2 সেমি কম হয়, তবে সাথির আঁকা সমকোণী ত্রিভুজের বাহু তিনটির দৈর্ঘ্য হিসাব করে লিখি ।
163. সালমার গতিবেগ অণিকের গতিবেগের থেকে 1মি./সেকেন্ড বেশি। 180 মিটার দৌড়াতে গিয়ে সালমা অণিকের থেকে 2 সেকেন্ড আগে পৌছায়। অণিকের গতিবের প্রতি সেকেন্ডে কত মিটার হিসাব করে লিখি।
164. আমাদের গ্রামে প্রলয়বাবু তার আয়তক্ষেত্রাকার জমিতে লাগানোর জন্য মোট 350 টি লঙ্কার চারা কিনলেন। সারি ধরে চারাগাছ লাগাতে গিয়ে দেখলেন যে, প্রতিটি সারিতে সারির সংখ্যা থেকে 24 টি করে বেশী গাছ লাগালে আরও 10 টি গাছ অতিরিক্ত থাকে । সারির সংখ্যা হিসাব করে লিখি।
165. জোসেফ এবং কুন্তল একটি কারখানায় কাজ করে। জোসেফ একটি জিনিস তৈরি করতে কুন্তলের চেয়ে 5 মিনিট কম সময় নেয়। 6 ঘন্টা কাজ করে জোসেফ, কুন্তলের চেয়ে 6 টি জিনিস বেশি তৈরি করে। কুন্তল ওই সময়ে কয়টি জিনিস তৈরি করে হিসাব করে লিখি।
166. স্থিরজলে একটি নৌকার গতিবেগ 8কিমি/ঘন্টা। নৌকাটি 5 ঘন্টায় স্রোতের অনুকূলে 15 কিমি এবং স্রোতের প্রতিকূলে 22 কিমি গেলে, স্রোতের বেগ কত ছিল হিসাব করে লিখি।
167. \(kx^2+2x+3k=0(k≠0)\)সমীকরণের বীজদ্বয়ের সমষ্টি এবং গুণফল সমান হলে, \(k\) এর মান লিখি ।
168. \(x^2-22x+105=0\) সমীকরণের বীজদ্বয় \(α\) এবং \(β\) হলে, \((α-β)\) এর মান লিখি ।
169. \(x^2-x=k(2x-1)\)সমীকরণের বীজদ্বয়ের সমষ্টি শূন্য হলে, \(k\) এর মান লিখি ।
170. \(x^2+bx+12=0\) এবং \(x^2+bx+q=0\) সমীকরণদ্বয়ের একটি বীজ \(2\) হলে, \(q\) এর মান লিখি ।
171. দুই অঙ্কবিশিষ্ট একটি সংখ্যার একক স্থানীয় অঙ্কটি দশক স্থানীয় অঙ্ক অপেক্ষা 6 বেশি এবং অঙ্কদ্বয়ের গুনফল সংখ্যাটির চেয়ে 12 কম। দুই অঙ্কের সংখ্যাটির একক স্থানীয় অঙ্ক কী কী হতে পারে হিসাব করে লিখি ।
172. \(k\) এর মান কত হলে \(9x^2+3kx+4=0\) দ্বিঘাত সমীকরণের বীজদ্বয় বাস্তব ও সমান হবে লিখি ।
173. দুই বন্ধু একসঙ্গে একটি ছোটো ব্যাবসা চালাবার জন্য বার্ষিক 12% সরল সুদের হারে একটি ব্যাংক থেকে 15000 টাকা ধার নিলেন। 4 বছর পরে ওই টাকার জন্য তাদের কত টাকা সুদ দিতে হবে হিসাব করে লিখি ।
174. উৎপলবাবু তাঁর জমি চাষের জন্য সমবায় ব্যাংক থেকে বার্ষিক 6% সরল সুদের হারে 3200 টাকা 2 বছরের জন্য ধার নিলেন। 2 বছর পরে সুদে-আসলে তাঁকে কত টাকা শোধ করতে হবে হিসাব করে লিখি।
175. বার্ষিক 5.25% সরল সুদের হারে শোভাদেবী একটি ব্যাংকে কিছু টাকা জমা রাখেন। 2 বছর পর তিনি সুদ হিসাবে 840 টাকা পেলেন। তিনি কত টাকা জমা রেখেছিলেন হিসাব করে লিখি ।
176. বার্ষিক 6% সরল সুদের হারে কোনো টাকা কত বছরে দ্বিগুন হবে হিসাব করে লিখি ।
177. একটি কৃষি সমবায় সমিতি তার সদস্যদের বার্ষিক 4% সরল সুদের হারে কৃষি ঋণ দেয়। কিন্তু ব্যাংক থেকে টাকা ধার করলে বার্ষিক 7.4% হারে সরল সুদ দিতে হয়। একজন কৃষক যদি ব্যাংক থেকে টাকা ধার না করে সমবায় সমিতি থেকে 5000 টাকা কৃষি ঋণ নেন, তবে তাঁর বছরে সুদ বাবদ কত টাকা বাঁচবে হিসাব করে লিখি ।
178. যদি 292 টাকার 1 দিনের সুদ 5 পয়সা হয়, তবে বার্ষিক শতকরা সুদের হার হিসাব করে লিখি ।
179. বার্ষিক 8% হার সরল সুদে কত বছরে 600 টাকার সুদ 168 টাকা হবে হিসাব করে লিখি ।
180. যদি বার্ষিক 10% হার সরল সুদে 800 টাকা ব্যাংকে জমা দিয়ে সুদে আসলে 1200 টাকা ফেরত পাই, তবে ওই টাকা কত সময়ের জন্য ব্যাংকে জমা ছিল হিসাব করে লিখি ।
181. একই সময়ে অমল রায় ব্যাংকে এবং পশুপতি ঘোষ পোষ্ট অফিসে 2000 টাকা করে জমা রাখেন। 3 বছর পর তারা সুদসহ যথাক্রমে 2360 টাকা ও 2480 টাকা ফেরত পান। ব্যাংক ও পোষ্ট অফিসের বার্ষিক শতকরা সরল সুদের হারের অনুপাত কত হবে হিসাব করে লিখি ।
182. আসলামচাচা কর্মক্ষেত্র থেকে অবসর নেওয়ার সময় 1,00,000 টাকা পেলেন। ওই টাকার কিছুটা ব্যাংকে ও বাকিটা পোস্ট অফিসে জমা রাখেন এবং প্রতি বছর সুদ বাবদ মোট 5400 টাকা পান। ব্যাংকের ও পোস্ট অফিসের বার্ষিক সরল সুদের হার যদি যথাক্রমে 5% ও 6% হয়, তবে তিনি কোথায় কত টাকা জমা রেখেছিলেন হিসাব করে লিখি ।
183. রথীনবাবু তাঁর দুই মেয়ের প্রত্যেকের জন্য ব্যাংকে এমনভাবে টাকা জমা রাখেন যাতে প্রত্যেক মেয়ের বয়স যখন 18 বছর হবে তখন প্রত্যেক মেয়ে 120000 টাকা করে পাবে। ব্যাংকের বার্ষিক সরল সুদের হার 10% এবং মেয়েদের বর্তমান বয়স যথাক্রমে 13 বছর এবং 8 বছর। তিনি প্রত্যেক মেয়ের জন্য ব্যাংকে কত টাকা জমা রেখেছিলেন হিসাব করি ।
184. বিমলকাকু তার 12 বছরের ছেলে এবং 14 বছরের মেয়ের জন্য 187500 টাকা ব্যাংকে বার্ষিক 5% সরল সুদের হারে এমনভাবে জমা রাখলেন যাতে, উভয়ের বয়স যখন 18 বছর হবে তারা প্রত্যেকে সুদে-আসলে সমান টাকা পাবে। তিনি তার ছেলে এবং | মেয়ের জন্য ব্যাংকে কত টাকা করে জমা রেখেছিলেন হিসাব করি।
185. ফতিমাবিবি একটি মাসিক সঞ্জয় প্রকল্পে প্রতি মাসের প্রথম দিনে 100 টাকা করে জমা করেন। তিনি এভাবে এক বছর টাকা জমা রাখলেন। যদি বার্ষিক সরল সুদের হার 6% হয়, তাহলে বছরের শেষে তিনি সুদে-আসলে কত টাকা পাবেন হিসাব করি।
186. জয়ন্ত একটি মাসিক সঞ্চয় প্রকল্পে প্রতি মাসের প্রথম দিন 1000 টাকা করে জমা করে। ব্যাংকে | বার্ষিক সরল সুদের হার 5% হলে জয়ন্ত 6 মাস শেষে সুদে-আসলে কত টাকা পাবে হিসাব করি।
187. রমেনবাবু মােট 370000 টাকা তিনটি ব্যাংকে জমা রাখেন। তিনটি ব্যাংকের বার্ষিক সরল সুদের হার যথাক্রমে 40%, 5% এবং 6%; 1 বছর পর তার তিনটি ব্যাংকে মােট সুদের পরিমাণ সমান হয় । | তিনি তিনটি ব্যাংকে কত টাকা করে জমা রেখেছিলেন হিসাব করি।
188. O কেন্দ্রীয় একটি বৃত্তের ব্যাসার্ধের দৈর্ঘ্য 5 সেমি এবং AB একটি একটি জ্যা এর দৈর্ঘ্য 8 সেমি । O বিন্দু থেকে AB জ্যা এর দূরত্ব হিসাব করে লিখি ।
189. O কেন্দ্রীয় একটি বৃত্তের ব্যাসের দৈর্ঘ্য 26 সেমি । O বিন্দু থেকে PQ জ্যা এর দুরত্ব 5 সেমি। PQ জ্যা এর দৈর্ঘ্য হিসাব করে লিখি ।
190. O কেন্দ্রীয় একটি বৃত্তের PQ জ্যা এর দৈর্ঘ্য 4 সেমি এবং O বিন্দু থেকে PQ এর দূরত্ব 2.1 সেমি । বৃত্তের ব্যাসের দৈর্ঘ্য হিসাব করে লিখি ।
191. যদি কোনো বৃত্তের একটি জ্যা এর দৈর্ঘ্য 48 সেমি এবং কেন্দ্র থেকে ওই জ্যা এর দূরত্ব 7 সেমি হয়, তবে ওই বৃত্তের কেন্দ্র থেকে যে জ্যা-এর দূরত্ব 20 সেমি সেই জ্যা এর দৈর্ঘ্য কত হবে তা হিসাব করে লিখি ।
192. P ও Q কেন্দ্রবিশিষ্ট দুটি বৃত্ত A ও B বিন্দুতে ছেদ করে। A বিন্দু দিয়ে PQ-এর সমান্তরাল সরলরেখা বৃত্তদুটিকে যথাক্রমে C ও D বিন্দুতে ছেদ করে। PQ=5 সেমি হলে, CD-এর দৈর্ঘ্য কত তা নির্ণয় করি ।
193. নিয়ামত একটি বৃত্ত এঁকেছে যার ব্যাসার্ধের দৈর্ঘ্য 13 সেমি.। আমি এই বৃত্তে একটি 10 সেমি. দৈর্ঘ্যের জ্যা AB এঁকেছি। বৃত্তের কেন্দ্র থেকে এই AB জ্যা-এর দুরত্ব হিসাব করে লিখি।
194. 17 সেমি. দৈর্ঘ্যের ব্যাসার্ধবিশিষ্ট বৃত্তের যে জ্যা-এর কেন্দ্র থেকে দূরত্ব ৪ সেমি., তার দৈর্ঘ্য হিসাব করে লিখি।
195. আমাদের বকুলতলা গ্রামে 2 মিটার চওড়া এবং 8 ডেসিমি গভীর একটি খাল কাটা হয়েছে। যদি মোট 240 ঘনমিটার মাটি কাটা হয়ে থাকে তবে খালটি কত লম্বা হিসাব করে লিখি ।
196. যদি একটি ঘনকের 6 টি পৃষ্ঠতলের ক্ষেত্রফলের সমষ্টি 216 বর্গসেমি হয়, তবে ঘনকটির আয়তন কত হবে হিসাব করে লিখি ।
197. 2.1 মিটার দীর্ঘ, 1.5 মিটার প্রশস্ত একটি আয়রঘনাকার চৌবাচ্চার অর্ধেক জলপূর্ণ আছে। ওই চৌবাচ্চায় আরও 630 লিটার জল ঢাললে জলের গভীরতা কতটা বৃদ্ধি পাবে হিসাব করে লিখি ।
198. গ্রামের আয়তক্ষেত্রাকার মাঠের দৈর্ঘ্য ও প্রস্থ যথাক্রমে 20 মিটার এবং 15 মিটার। ওই মাঠের ভিতরে চারটি কোনে পিলার বসানোর জন্য 4 মিটার দৈর্ঘ্য বিশিষ্ট চারটি ঘনকাকৃতি গর্ত কেটে অপসারিত মাটি অবশিষ্ট জমির ওপর ছড়িয়ে দেওয়া হল। মাঠের তলের উচ্চতা কতটা বৃদ্ধি পেল হিসাব করে লিখি ।
199. 48 মিটার লম্বা এবং 31.5 মিটার চওড়া একখন্ড নীচু জমিকে 6.5 ডেসিমি উঁচু করার জন্য ঠিক করা হয়েছে পাশের 27 মিটার লম্বা এবং 18.2 মিটার চওড়া একটি জমি গর্ত করে মাটি তোলা হবে। গর্তটি কত মিটার গভীর করতে হবে হিসাব করে লিখি ।
200. আমাদের তিনতলা ফ্লাটের তিনটি পরিবারের দৈনিক জলের চাহিদা যথাক্রমে 1200 লিটার, 1050 লিটার এবং 950 লিটার। এই চাহিদা মেটানোর পরও চাহিদার 25% জল মজুদ থাকে এমন একটি ট্যাঙ্ক বসানোর জন্য মাত্র 2.5 মি দীর্ঘ এবং 1.6 মিটার চওড়া একটি জায়গা পাওয়া গেছে। ট্যাঙ্কটি কত মিটার গভীর করতে হবে হিসাব করে লিখি। জায়গাটি যদি প্রস্থের দিকে আরও 4 ডেসিমি বেশি হত, তবে ট্যাঙ্কটি কতটা গভীর করতে হতো, তা হিসাব করে লিখি ।
201. 5 সেমি পুরু কাঠের তক্তায় তৈরি ঢাকনাসহ একটি কাঠের বাক্সের ওজন 115.5 কিগ্রা। কিন্তু চাল ভর্তি বাক্সটির ওজন 880.5 কিগ্রা। বাক্সটির ভিতরের দিকের দৈর্ঘ্য ও প্রস্থ যথাক্রমে 12 ডেসিমি এবং 8.5 ডেসিমি এবং এক ঘন ডেসিমি চালের ওজন 1.5 কিগ্রা। বাক্সটির ভিতরের উচ্চতা কত হিসাব করে লিখি । প্রতি বর্গ ডেসিমি 1.50 টাকা হিসাবে বাক্সটির বাইরের চারিপাশ রং করতে কত খরচ পড়বে হিসাব করে লিখি ।
202. 20 মি. দীর্ঘ এবং 18.5 মি. চওড়া একটি আয়তঘনাকার পুকুরে 3.2 মি. গভীর জল আছে। ঘন্টায় 160 কিলোলিটার জলসেচ করতে পারে এমন একটি পাম্প দিয়ে কতক্ষণে পুকুরটির সমস্ত জলসেচ করা যাবে হিসাব করে লিখি। ওই জল যদি 59.2 মিটার দীর্ঘ এবং 40 মিটার চওড়া একটি আল দেওয়া ক্ষেতে ফেলা হয়, তবে সেই জমিতে জলের গভীরতা কত হবে হিসাব করে লিখি । [1 ঘন মিটার = 1 কিলোলিটার]
203. একটি আয়তঘনের তল সংখ্যা \(x\) ধার সংখ্যা \(y\) শীর্ষবিন্দুর সংখ্যা \(z\) এবং কর্ণের সংখ্যা \(p\) হলে \((x-y+z+p)\) -এর মান কত তা লিখি।
204. দুটি আয়তঘনের মাত্রাগুলির দৈর্ঘ্য যথাক্রমে 4,6,4 একক এবং 8,(2h-1),2 একক। যদি আয়তঘন দুটির ঘনফল সমান হয়, তাহলে h-এর মান কত তা লিখি।
205. একটি ঘনকের প্রত্যেকটি ধারের দৈর্ঘ্য 50% বৃদ্ধি পেলে, ঘনকটির সমগ্রতলের ক্ষেত্রফল শতকরা কত বৃদ্ধি হবে তা হিসাব করে লিখি ।
206. \(x^2:yz\) এবং কোন অনুপাতের মিশ্র অনুপাত \(xy:z^2\) হবে হিসাব করে লিখি ।
207. আমার কাছে 5000 টাকা আছে। আমি ওই টাকা একটি ব্যাংকে বার্ষিক 8.5% চক্রবৃদ্ধি সুদের হারে জমা রাখলাম। 2 বছরের শেষে সুদে-আসলে মোট কত পাব হিসাব করে লিখি।
208. গৌতমবাবু 2000 টাকা বার্ষিক 6% চক্রবৃদ্ধি সুদের হারে 2 বছরের জন্য ধার নিয়েছেন। 2 বছর পরে তিনি কত টাকা চক্রবৃদ্ধি সুদ দেবান তা হিসাব করে লিখি।
209. বার্ষিক 5% চক্রবৃদ্ধি সুদের হারে 80000 টাকার \(2\cfrac{ 1}{2}\) বছরের সমূল চক্রবৃদ্ধি কত হবে, তা হিসাব করে লিখি ।
210. বার্ষিক 10% চক্রবৃদ্ধির হার সুদে কোন আসলের 3 বছরের চক্রবৃদ্ধি সুদ 2648 হবে, তা হিসাব করে লিখি ।
211. বার্ষিক 8% চক্রবৃদ্ধি হার সুদে কত টাকার 3 বছরের সমূল চক্রবৃদ্ধি 31492.80 টাকা হবে, তা হিসাব করে লিখি ।
212. 10000 টাকার বার্ষিক 5% সুদের হারে 3 বছরের চক্রবৃদ্ধি সুদ ও সরল সুদের পার্থক্য হিসাব করে লিখি ।
213. বার্ষিক চক্রবৃদ্ধি সুদের হার যদি প্রথম বছর 7% এবং দ্বিতীয় বছর 8% হয়, তবে 6000 টাকার 2 বছরের চক্রবৃদ্ধি সুদ হিসাব করে লিখি।
214. 3 মাস অন্তর দেয় বার্ষিক 10% চক্রবৃদ্ধি হার সুদে 6250 টাকার 9 মাসের চক্রবৃদ্ধি সুদ হিসাব করে লিখি।
215. যদি 60000 টাকার 2 বছরের সমূল চক্রবৃদ্ধি 69984 টাকা হয়, তবে বার্ষিক সুদের হার হিসাব করে লিখি ।
216. শতকরা বার্ষিক কত চক্রবৃদ্ধি হার সুদে 10000 টাকার 2 বছরের সমূল চক্রবৃদ্ধি 12100 টাকা হবে, তা হিসাব করে লিখি ।
217. বার্ষিক 10% চক্রবৃদ্ধি হার সুদে কত বছরের 300000 টাকার সমূল চক্রবৃদ্ধি 399300 টাকা হবে, তা হিসাব করে লিখি ।
218. একটি কারখানার একটি মেসিনের মূল্য 180000 টাকা। মেশিনটির মূল্য প্রতি বছর 10% হ্রাসপ্রাপ্ত হয়। 3 বছর পরে ওই মেশিনটির মূল্য কত হবে, তা হিসাব করে লিখি ।
219. বকুলতলা গ্রামের পঞ্চায়েত সমিতি যেসব পরিবারে বিদ্যুৎ সংযোগ নেই তাদের বাড়িতে বিদ্যুৎ পৌঁছানোর পরিকল্পনা গ্রহন করে। এই গ্রামে 1200 পরিবারে বিদ্যুৎ সংযোগ নেই। প্রতি বছর যদি পূর্ব বছরের তুলনায় 75% বিদ্যুৎহীন পরিবারে বিদ্যুৎ পৌঁছালোর ব্যবস্থা করা হয়, তবে 2 বছর পরে বকুলতলা গ্রামে বিদ্যুৎহীন পরিবারের সংলহ্যা কত হবে, তা হিসাব করে লিখি।
220. বার্ষিক 4% হার সুদে কত টাকার 2 বছরের সরল সুদ ও চক্রবৃদ্ধি সুদের অন্তর 80 টাকা হবে হিসাব করে লিখি।
221. বার্ষিক 10% চক্রবৃদ্ধি সুদের হারে কত বছরে 4000 টাকার সমূল চক্রবৃদ্ধি 5324 টাকা হবে, তা | হিসাব করে লিখি।
222. স্টিলের পাতলা চাদর দিয়ে তৈরি ঢাকনাসমেত একটি ড্রামের ব্যাসের দৈর্ঘ্য 28 সেমি. । ড্রামটি তৈরি করতে যদি 2816 বর্গ সেমি. চাদর লাগে, তবে ড্রামটির উচ্চতা হিসাব করে লিখি ।
223. একটি ঘরের বারান্দায় 5.6 ডেসিমি. ব্যাসের এবং 2.5 মিটার লম্বা দুটি লম্ব বৃত্তাকার পিলার ঢালাই করতে কত ঘন ডেসিমি. মশলা লাগবে হিসাব করে লিখি । প্রতি বর্গ মিটার 125 টাকা হিসাবে পিলার দুটি প্লাস্টার করতে কত খরচ হবে হিসাব করি ।
224. 2.8 ডেসিমি. দৈর্ঘ্যের অন্তর্ব্যাসবিশিষ্ট এবং 7.5 ডেসিমি. লম্বা একটি জ্বালানি গ্যাস সিলিন্ডারে 15.015 কিগ্রা গ্যাস থাকলে, প্রতি ঘন ডেসিমি. গ্যাসের ওজন হিসাব করে লিখি ।
225. 7 সেমি. ব্যাসের একটি লম্বা গ্যাসজারে কিছু জল আছে । ওই জলে যদি 5.6 সেমি. দৈর্ঘ্যের ব্যাসের 5 সেমি. লম্বা একটি নিরেট লোহার লম্ব বৃত্তাকার চোঙাকৃতি টুকরো সম্পূর্ণ ডোবানো হয়, তবে জলতল কতটুকু উপরে উঠবে হিসাব করে লিখি ।
226. দুই মুখ খোলা একটি লম্ব বৃত্তাকার লোহার পাইপের মুখের বহির্ব্যাসের দৈর্ঘ্য 30 সেমি., অন্তর্ব্যাসের দৈর্ঘ্য 26 সেমি. এবং পাইপটির দৈর্ঘ্য 14.7 মিটার। প্রতি বর্গ ডেসিমি. 2.25 টাকা হিসাবে ওই পাইপয়টির সমগ্রতলে আলকাতরার প্রলেপ দিতে কত খরচ হবে, হিসাব করে লিখি ।
227. একটি লম্ব বৃত্তাকার চোঙের উচ্চতা উহার ব্যাসার্ধ্যের দ্বিগুণ । যদি উচ্চতা 6 গুণ হতো তবে চোঙটির আয়তন 539 ঘন ডেসিমি বেশি হতো। চোঙটির উচ্চতা হিসাব করে লিখি ।
228. প্রতিটি পিলার যদি 3 মিটার লম্বা হয়, তবে কত ঘন ডেসিমি মশলা লাগবে হিসাব করে লিখি ।
229. প্লাস্টারের মশলা তৈরি করতে যদি 4:1 অনুপাতে বালি ও সিমেন্ট মেশাতে হয়, তবে কত ঘন ডেসিমি সিমেন্টের প্রয়োজন, হিসাব করে লিখি ।
230. একটি লম্ব বৃত্তাকার ফাঁপা চোঙের বহির্ব্যাসের দৈর্ঘ্য 16 সেমি. এবং অন্তর্ব্যাসের দৈর্ঘ্য 12 সেমি. । চোঙটির উচ্চতা 36 সেমি. । চোঙটিকে গলিয়ে 2 সেমি. দৈর্ঘ্যের ব্যাসবিশিষ্ট এবং 6 সেমি. দৈর্ঘ্যের কতগুলি নিরেট চোঙ তৈরি করা যাবে হিসাব করে লিখি ।
231. একটি লম্ব বৃত্তাকার চোঙের বক্রতলের ক্ষেত্রফল \(c\) বর্গ একক, ভূমির ব্যাসার্ধের দৈর্ঘ্য \(r\) একক এবং আয়তন \(v\) ঘন একক হলে, \(\cfrac{cr}{v}\) এর মান কত তা লিখি ।
232. একটি চামড়ার বল তৈরি করতে প্রতি বর্গসেমি. 17.50 টাকা হিসাবে 431.20 টাকা লেগেছে । বলটির ব্যাসের দৈর্ঘ্য হিসাব করে লিখি ।
233. অর্ধগোলাকৃতি একটি বাটি তৈরি করতে 127\(\cfrac{2}{7}\) বর্গসেমি পাত লেগেছে । বাটিটির মুখের ব্যাসের দৈর্ঘ্য হিসাব করে লিখি ।
234. একটি নিরেট লোহার গোলার ব্যাসার্ধের দৈর্ঘ্য 2.1 সেমি। ওই গোলাটিতে কত ঘন সেমি লোহা আছে তা হিসাব করে লিখি এবং ওই লোহার বক্রতলের ক্ষেত্রফল নির্ণয় করি ।
235. একটি নিরেট সিসার গোলকের ব্যাসের দৈর্ঘ্য 14 সেমি । এই গোলকটি গলিয়ে 3.5 সেমি দৈর্ঘ্যের ব্যাসার্ধের কতগুলি নিরেট গোলক তৈরি করা যাবে হিসাব করে লিখি ।
236. 3 সেমি, 4 সেমি ও 5 সেমি দৈর্ঘ্যের ব্যাসার্ধের তিনটি নিরেট তামার গোলক গলিয়ে একটি নিরেট বড়ো গোলক তৈরি করা হলো । বড়ো গোলকটির ব্যাসার্ধের দৈর্ঘ্য হিসাব করে লিখি ।
237. একটি অর্ধগোলাকৃতি গম্বুজের ভূমিতলের ব্যাসের দৈর্ঘ্য 42 ডেসিমি । গম্বুজটির উপরিতল রঙ করতে প্রতি বর্গ মিটার 35 টাকা হিসাবে কত খরচ পড়বে তা হিসাব করে লিখি ।
238. 8 সেমি দৈর্ঘ্যের ব্যাসার্ধের একটি নিরেট লোহার গোলককে গলিয়ে 1 সেমি দৈর্ঘ্যের ব্যাসার্ধের কয়টি নিরেট গুলি তৈরি করা যাবে হিসাব করে লিখি ।
239. একটি নিরেট গোলকের বক্রতলের ক্ষেত্রফল \(=S\) এবং আয়তন \(=V\) হলে,\( S^3/V^2\) এর মান কত তা লিখি ।\( (π \)এর মান না বসিয়ে)
240. একটি আয়তক্ষেত্র PQRS অঙ্কন করি যার PQ= 4 সেমি. এবং QR = 6 সেমি.। আয়তক্ষেত্রের কর্ণদুটি অঙ্কন করি এবং অঙ্কন না করে ∆PQR-এর পরিকেন্দ্র কোথায় হবে এবং পরিব্যাসার্ধের দৈর্ঘ্য কত হবে হিসাব করে লিখি। ∆PQR-এর পরিবৃত্ত অঙ্কন করে যাচাই করি।
241. একটি সমদ্বিবাহু ত্রিভুজ, যার ভূমির দৈর্ঘ্য 7.8 সেমি. এবং সমান বাহু দুটির প্রত্যেকটির দৈর্ঘ্য 6.5 সেমি.
242. পাশের ছবিতে \(\angle\)DBA = 40°, \(\angle\)BAC = 60° এবং\(\angle\)CAD=20°; \(\angle\)DCA ও \(\angle\)BCA-এর মান নির্ণয় করি। \(\angle\)BAD ও \(\angle\)DCB-এর মানের সমষ্টি কত হবে হিসাব করে দেখি।
243. একটি ঢাকনাসমেত চোঙাকৃতি জলের ট্যাঙ্কের ভূমির ক্ষেত্রফল 616 বর্গ মিটার এবং উচ্চতা 21 মিটার। হিসাব করে ওই ট্যাঙ্কের সমগ্রতলের ক্ষেত্রফল লিখি।
244. 11 সেমি. বহিঃপরিধিবিশিষ্ট 105 সেমি. লম্বা টিউবলাইটের কাচ যদি 0.2 সেমি. পুরু হয়, তবে 5 টি টিউবলাইট তৈরি করতে কত ঘন সেমি. কাচ লাগবে, হিসাব করে লিখি।
245. \(√5+√3\) -এর সঙ্গে কত যোগ করলে যোগফল \(2√5\) হবে, হিসাব করে লিখি ।
246. আমি একটি O কেন্দ্রীয় বৃত্ত এঁকেছি যার ব্যাসার্ধের দৈর্ঘ্য 6 সেমি.। কেন্দ্র O থেকে 10 সেমি, | দূরত্বে অবস্থিত P বিন্দু থেকে PT স্পর্শক আঁকলাম। হিসাব করে PT স্পর্শকের দৈর্ঘ্য লিখি।
247. আমি যদি এমন একটি O কেন্দ্রীয় বৃত্ত আঁকি যার কেন্দ্র থেকে 26 সেমি. দূরত্বে অবস্থিত P বিন্দু থেকে অঙ্কিত বৃত্তের স্পর্শকের দৈর্ঘ্য 10 সেমি. হবে, তবে বৃত্তের ব্যাসার্ধের দৈর্ঘ্য কী হবে হিসাব করে লিখি।
248. একটি সমকোণী ত্রিভুজের সমকোণ সংলগ্ন বাহু দুইটির দৈর্ঘ্য 4সেমি. ও 3সেমি.। সমকোণ সংলগ্ন বাহু দুইটির দীর্ঘ বাহুটিকে অক্ষ ধরে ত্রিভুজটিকে একবার পূর্ণ আবর্তন করলে যে ঘনবস্তু তৈরি হয়, তার পার্শ্বতলের ক্ষেত্রফল, সমগ্রতলের ক্ষেত্রফল এবং আয়তন হিসাব করে লিখি।
249. পাশের চিত্রে \(\triangle\)ABC-এর DE || BC; যদি AD = 5 সেমি., DB = 6 সেমি. এবং AE = 7.5 সেমি, হয়,তবে AC-এর দৈর্ঘ্য হিসাব করে লিখি।
250. \(\triangle\)ABC-এর \(\angle\)ABC = 90° এবং BD\(\bot\)AC; যদি BD = 6 সেমি. এবং AD = 4 সেমি. হয়, তবে CD-এর দৈর্ঘ্য হিসাব করে লিখি।
251. \(\triangle\)ABC-এর \(\angle\)ABC = 90° এবং BD \(\bot\) AC; যদি AB = 6 সেমি. এবং BD = 3 সেমি. এবং CD = 5.4 সেমি. হয়, তবে BC বাহুর দৈর্ঘ্য হিসাব করে লিখি।
252. 21 সেমি. দৈর্ঘ্যের ব্যাসার্ধ ও 21 সেমি. উচ্চতাবিশিষ্ট একটি লম্ব বৃত্তাকার ড্রাম এবং 21 সেমি. দৈর্ঘ্যের ব্যাসবিশিষ্ট একটি নিরেট লােহার গােলক নিলাম। ওই ড্রাম ও নিরেট লােহার গােলকটির আয়তন অনুপাত হিসাব করে লিখি। (ড্রামের বেধ অগ্রাহ্য করব)। এবার ড্রামটি সম্পূর্ণ জলপূর্ণ করে ওই গােলকটি ড্রামটিতে সম্পূর্ণ ডুবিয়ে তুলে নিলাম। এরফলে এখন ড্রামে জলের গভীরতা কত হলাে নির্ণয় করি।
253. 11 মিটার উঁচু একটি বাড়ির ছাদ থেকে দেখলে একটি ল্যাম্পপােস্টের চূড়া ও পাদবিন্দুর অবনতি কোণ যথাক্রমে 30° এবং 60°; ল্যাম্পপােস্টটির উচ্চতা হিসাব করে লিখি।
254. যদি নীচের প্রদত্ত তথ্যের যৌগিক গড় 15 হয়, তবে p-এর মান হিসাব করে লিখি :
255. রহমতচাচা তার 50 টি বাক্সে বিভিন্ন সংখ্যায় আম ভরে পাইকারি বাজারে নিয়ে যাবেন। কতগুলি বাক্সে কতগুলি আম রাখলেন তার তথ্য নীচের ছকে লিখলাম।
256. মহিদুল পাড়ার হাসপাতালের 100 জন রোগীর বয়স নীচের ছকে লিখল। ওই 100 জন রোগীর গড় বয়স হিসাব করে লিখি। (যে-কোনো পদ্ধতিতে)
257. সূর্যের উন্নতি কোণ যখন 30° তখন একটি স্তম্ভের ছায়ার দৈর্ঘ্য 9 মিটার হয়। স্তম্ভটির উচ্চতা হিসাব করে লিখি।
258. ঝড়ে একটি টেলিগ্রাফপোস্ট মাটি থেকে কিছু উপরে মচকে যাওয়ায় তার অগ্রভাগ গোড়া থেকে 8√3 মিটার দূরে মাটি স্পর্শ করেছে এবং অনুভূমিক রেখার সঙ্গে 30° কোণ উৎপন্ন করেছে। পোস্টটি মাটি থেকে কত উপরে মচকে ছিল এবং পোস্টটির উচ্চতা কত ছিল হিসাব করে লিখি।
259. 9√3 মিটার উঁচু তিনতলা বাড়ির ছাদ থেকে দেখলে 30 মিটার দূরে অবস্থিত একটি কারখানার চিমনির উন্নতি কোণ 30° হয়। চিমনির উচ্চতা হিসাব করে লিখি।
260. 250 মিটার লম্বা সুতো দিয়ে একটি ঘুড়ি ওড়াচ্ছি। সুতোটি যখন অনুভূমিক রেখার সঙ্গে 60° কোণ করে থাকে এবং সুতোটি যখন অনুভূমিক রেখার সঙ্গে 45° কোণ করে তখন প্রতিক্ষেত্রে ঘুড়িটি আমার থেকে কত উপরে থাকবে হিসাব করে লিখি। এদের মধ্যে কোন ক্ষেত্রে ঘুড়িটি বেশি উঁচুতে থাকবে নির্ণয় করি।
261. একটি তিনতলা বাড়ির ছাদে 3.3 মিটার দৈর্ঘ্যের একটি পতাকা আছে। রাস্তার কোনো এক স্থান থেকে দেখলে পতাকা দণ্ডটির চূড়া ও পাদদেশের উন্নতি কোণ যথাক্রমে 50° ও 45° হয়। তিনতলা বাড়িটির উচ্চতা হিসাব করে লিখি। [ধরি, tan50° = 1.192]
262. একটি চিমনির সঙ্গে একই সমতলে অবস্থিত অনুভূমিক সরলরেখায় কোনো এক বিন্দু থেকে চিমনির দিকে 50 মিটার এগিয়ে যাওয়ায় তার চূড়ার উন্নতি কোণ 30° থেকে 60° হলো। চিমনির উচ্চতা হিসাব করে লিখি।
263. 126 ডেসিমি উঁচু একটি উল্লম্ব খুঁটি মাটি থেকে কিছু উপরে দুমড়ে গিয়ে উপরের অংশ কাত হয়ে পড়ায় তার অগ্রভাগ মাটি স্পর্শ করে ভূমির সঙ্গে 30° কোণ উৎপন্ন করেছে। খুঁটিটি কত উপরে দুমড়ে গিয়েছিল এবং তার অগ্রভাগ গোড়া থেকে কত দূরে মাটি স্পর্শ করেছিল হিসাব করে লিখি।
264. 5√3 মিটার উঁচু একটি রেলওয়ে ওভারব্রিজে দাঁড়িয়ে অমিতাদিদি প্রথমে একটি ট্রেনের ইঞ্জিনকে ব্রিজের এপারে 30° অবনতি কোণে দেখলেন। কিন্তু 2 সেকেন্ড পরই ওই ইঞ্জিনকে ব্রিজের ওপারে 45° অবনতি কোণে দেখলেন। ট্রেনটির গতিবেগ মিটার প্রতি সেকেন্ডে হিসাব করে লিখি।
265. ঝড়ে একটি গাছ মচকে গিয়ে তার অগ্রভাগ এমনভাবে ভূমি স্পর্শ করেছে যে গাছটির অগ্রভাগ থেকে গোড়ার দূরত্ব এবং বর্তমান উচ্চতা সমান। গাছটির অগ্রভাগ ভূমির সাথে কত কোণ করেছে হিসাব করি।
266. ABC সমকোণী ত্রিভুজের ∠B = 90°, ∠A = 30° এবং AC = 20 সেমি.। BC এবং AB বাহুদ্বয়ের দৈর্ঘ্য হিসাব করে লিখি।
267. ৪ সেমি., 15 সেমি. ও 17 সেমি.
268. 9 সেমি., 11 সেমি. ও 6 সেমি.
269. আমাদের পাড়ার রাস্তায় একটি 15 মিটার লম্বা মই এমনভাবে রাখা আছে যে মইটি ভূমি থেকে 9 মিটার উঁচুতে অবস্থিত মিলিদের জানালা স্পর্শ করেছে। এবার ওই রাস্তার একই বিন্দুতে মইটির পাদদেশ রেখে মইটিকে ঘুরিয়ে এমভাবে রাখা হলো যে মইটি রাস্তার অপর প্রান্তে অবস্থিত আমাদের জানালা স্পর্শ করল। আমাদের জানালা যদি ভূমি থেকে 12 মিটার উপরে থাকে, তবে পাড়ার ওই রাস্তাটি কত চওড়া হিসাব করে লিখি।
270. ABC ত্রিভুজের AB = (2a-1) সেমি., AC= 2√2a সেমি. এবং BC = (2a+1) সেমি. হলে ∠BAC-এর মান লিখি।
271. 24 সেমি. দৈর্ঘ্যের ব্যাসবিশিষ্ট একটি লম্ব বৃত্তাকার চোঙাকৃতি পাত্রে কিছু জল আছে। 6 সেমি. দৈর্ঘ্যের ভূমিতলের ব্যাস ও 4 সেমি উচ্চতাবিশিষ্ট 60 টি নিরেট শঙ্কু আকৃতির লোহার টুকরো ওই জলে সম্পূর্ণভাবে নিমজ্জিত করলে, জলতলের উচ্চতা কতটা বৃদ্ধি পাবে হিসাব করে লিখি।
272. একটি নিরেট লম্ব বৃত্তাকার লোহার দণ্ডের ভূমিতলের ব্যাসার্ধের দৈর্ঘ্য 32 সেমি. এবং দৈর্ঘ্য 35 সেমি.। দণ্ডটি গলিয়ে ৪ সেমি. দৈর্ঘ্যের ব্যাসার্ধ ও 28 সেমি. উচ্চতাবিশিষ্ট কতগুলি নিরেট শঙ্কু তৈরি করা যাবে তা হিসাব করে লিখি।
273. একটি নিরেট লম্ব বৃত্তাকার দণ্ডের প্রস্থচ্ছেদের ব্যাসার্ধের দৈর্ঘ্য 3.2 ডেসিমি.। সেই দণ্ডটি গলিয়ে 21টি নিরেট গোলক তৈরি করা হলো। গোলকগুলির ব্যাসার্ধের দৈর্ঘ্য যদি ৪ সেমি. হয়, তবে দণ্ডটির দৈর্ঘ্য কত ছিল তা হিসাব করে লিখি।
274. 21 ডেসিমি. দীর্ঘ, 11 ডেসিমি. প্রশস্ত এবং 6 ডেসিমি. গভীর একটি চৌবাচ্চা অর্ধেক জলপূর্ণ আছে। এখন সেই চৌবাচ্চায় যদি 21 সেমি. দৈর্ঘ্যের ব্যাসের 100টি লোহার গোলক সম্পূর্ণ ডুবিয়ে দেওয়া হয়, তবে জলতল কত ডেসিমি. উঠবে তা হিসাব করে লিখি।
275. একটি নিরেট লম্ব বৃত্তাকার শঙ্কুর, ভূমিতলের ব্যাসার্ধের দৈর্ঘ্য একটি নিরেট গোলকের ব্যাসার্ধের দৈর্ঘ্যের সমান। গোলকের আয়তন শঙ্কুর আয়তনের দ্বিগুণ হলে, শঙ্কুর উচ্চতা এবং ভূমিতলের ব্যাসার্ধের দৈর্ঘ্যের অনুপাত কত তা লিখি।
276. ∆ABC-এর \(\angle\)ABC = 90° এবং BD \(\bot\) AC; যদি BD = 8 সেমি. এবং AD = 5 সেমি. হয়, তবে CD-এর দৈর্ঘ্য হিসাব করে লিখি।
277. ABC একটি সমকোণী ত্রিভুজ যার \(\angle\)B সমকোণ এবং BD \(\bot\) AC; যদি AD = 4 সেমি. এবং CD = 16 সেমি. হয়, তবে BD ও AB-এর দৈর্ঘ্য হিসাব করে লিখি।
278. আমাদের মাঠে 6 সেমি. দৈর্ঘ্যের একটি কাঠির 4 সেমি. দৈর্ঘ্যের ছায়া মাটিতে পড়েছে। ওই একই সময়ে যদি একটি উঁচু টাওয়ারের ছায়ার দৈর্ঘ্য 28 মিটার হয়, তবে টাওয়ারের উচ্চতা কত হবে হিসাব করে লিখি।
279. PX = 2 একক, XQ = 3.5 একক, YR = 7 একক এবং PY = 4.25 একক হলে, XY ও QR পরস্পর সমান্তরাল হবে কিনা যুক্তি দিয়ে লিখি।
280. PQ = 8 একক, YR = 12 একক, PY = 4 একক এবং PY-এর দৈর্ঘ্য XQ-এর দৈর্ঘ্যের চেয়ে 2 একক কম হলে, XY ও QR সমান্তরাল হবে কিনা যুক্তি দিয়ে লিখি।
281. একই ভূমি QR-এর উপর এবং একই পার্শ্বে দুটি ত্রিভুজ ∆PQR ও ∆SQR অঙ্কন করেছি যাদের ক্ষেত্রফল সমান। F ও G যথাক্রমে ত্রিভুজদুটির ভরকেন্দ্র হলে প্রমাণ করি যে, FG || QR.
282. ∆ABC-এর BC বাহুর সমান্তরাল সরলরেখা AB এবং AC বাহুকে যথাক্রমে X এবং Y বিন্দুতে ছেদ করে। AX = 2.4 সেমি., AY = 3.2 সেমি. এবং YC = 4.8 সেমি., হলে, AB-এর দৈর্ঘ্য
(a) 3.6 সেমি. (b) 6 সেমি. (c) 6.4 সেমি. (d) 7.2 সেমি.
283. O কেন্দ্রীয় বৃত্তের উপর P একটি বিন্দু। P বিন্দুতে বৃত্তের স্পর্শক অঙ্কন করি এবং ওই স্পর্শক থেকে বৃত্তের ব্যাসার্ধের দৈর্ঘ্যের সমান করে PQ অংশ কেটে নিই। Q বিন্দু থেকে বৃত্তের অপর স্পর্শক QR অঙ্কন করি এবং চাদার সাহায্যে ∠PQR পরিমাপ করে তার মান লিখি।
284. আমি একটি মুখবন্ধ লম্ব বৃত্তাকার শঙ্কু তৈরি করেছি যার ভূমির ব্যাসার্ধের দৈর্ঘ্য 15 সেমি. এবং তির্যক উচ্চতা 24 সেমি.। ওই শঙ্কুর পার্শ্বতলের ক্ষেত্রফল ও সমগ্রতলের ক্ষেত্রফল হিসাব করে লিখি।
285. লম্ব বৃত্তাকার শঙ্কু আকৃতির একটি তাবু তৈরি করতে 77 বর্গ মিটার ত্রিপল লেগেছে। তবুটির তির্যক উচ্চতা যদি 7 মিটার হয়, তবে তাঁবুটির ভূমিতলের ক্ষেত্রফল হিসাব করে লিখি।
286. লম্ব বৃত্তাকার শঙ্কু আকৃতির একটি লোহার পাতের বয়া তৈরি করতে 75 বর্গ মিটার লোহার পাত লেগেছে। বয়াটির তির্যক উচ্চতা যদি 5 মিটার হয়, তবে বয়াটিতে কত বায়ু আছে এবং বয়াটির উচ্চতা কত হিসাব করে লিখি। ওই বয়াটির চারপাশ রং করতে প্রতি বর্গ মিটার 2.80 টাকা হিসাবে কত খরচ পড়বে নির্ণয় করি। [লোহার পাতের বেধ হিসাবের মধ্যে ধরতে হবে না]
287. শোলা দিয়ে তৈরি একটি শঙ্কু আকৃতির মাথার টোপরের ভূমির বাইরের দিকের ব্যাসের দৈর্ঘ্য 21 সেমি.। টোপরটির উপরিভাগ রাংতা দিয়ে মুড়তে প্রতি বর্গ সেমি. 10 পয়সা হিসাবে 57.75 টাকা খরচ পড়ে। টোপরটির উচ্চতা ও তির্যক উচ্চতা হিসাব করে লিখি।
288. একটি লম্ব বৃত্তাকার শঙ্কুর আয়তন V ঘন একক, ভূমিতলের ক্ষেত্রফল A বর্গ একক এবং উচ্চতা H একক হলে, \(\frac{AH}{V}\) -এর মান কত তা লিখি।
289. একটি লম্ব বৃত্তাকার শঙ্কুর আয়তন এবং পার্শ্বতলের ক্ষেত্রফলের সাংখ্যমান সমান। শঙ্কুটির উচ্চতা এবং ব্যাসার্ধের দৈর্ঘ্য যথাক্রমে h একক এবং r একক হলে, \(\frac{1}{h^2} +\frac{1}{r^2}\) -এর মান কত তা লিখি।
290. 16 সেমি. দৈর্ঘ্যের ব্যাসবিশিষ্ট একটি বৃত্তের কেন্দ্র থেকে 17 সেমি. দূরত্বে অবস্থিত বহিঃস্থ একটি বিন্দু থেকে অঙ্কিত বৃত্তের স্পর্শকের দৈর্ঘ্য হিসাব করে লিখি।
291. একটি বৃত্তের উপর অবস্থিত P ও Q বিন্দু দুটিতে অঙ্কিত স্পর্শক দুটি A বিন্দুতে ছেদ করেছে। ∠PAQ = 60° হলে ∠APQ-এর মান নির্ণয় করি।
292. পাশের চিত্রে বৃত্তের কেন্দ্র O এবং BOA বৃত্তের ব্যাস। বৃত্তের P বিন্দুতে অঙ্কিত স্পর্শক বর্ধিত BA কে T বিন্দুতে ছেদ করে। ∠PBO=30°হলে,∠PTAএর মান নির্ণয় করি।
293. পাশের চিত্রে ABC ত্রিভূজটি একটি বৃত্তে পরিলিখিত এবং বৃত্তকে P,Q,R বিন্দুতে স্পর্শ করে। যদি AP=4 সেমি,BP=6 সেমি,AC=12 সেমি এবং BC=x সেমি হয়,তবে x এর মান নির্ণয় করি।
294. প্রিয়ম, সুপ্রিয়া ও বুলু যথাক্রমে 15000 টাকা, 10000 টাকা এবং 25000 টাকা দিয়ে একটি ছোটো মুদির দোকান খুলল। কিন্তু বৎসরান্তে 3000 টাকা লোকসান হলো। কাকে কত টাকা লোকসানের পরিমাণ দিতে হবে হিসাব করে লিখি।
295. শোভা ও মাসুদ দুজনে মিলে 2,50,000 টাকার একটি গাড়ি কিনে 2,62,500 টাকায় বিক্রি করলেন। গাড়িটি কেনার সময়ে শোভা মাসুদের 1\(\frac{1}{2}\) গুণ টাকা দিয়ে থাকলে, কে কত টাকা লভ্যাংশ পাবেন তা হিসাব করে লিখি।
296. তিনবন্ধু যথাক্রমে 5000 টাকা, 6000 টাকা ও 7000 টাকা দিয়ে একটি অংশীদারি ব্যাবসা শুরু করার এক বছর পর দেখলেন 1800 টাকা লোকসান হয়েছে। মূলধন ঠিক রাখার জন্য প্রত্যেকে লোকসানের পরিমাণ দিয়ে দেবেন বলে সিদ্ধান্ত করেন। তাদের কাকে কত টাকা দিতে হবে হিসাব করে লিখি।
297. তিনবন্ধু যথাক্রমে 8000 টাকা, 10000 টাকা ও 12000 টাকা সংগ্রহ করে এবং ব্যাংক থেকে কিছু টাকা ধার নিয়ে একটি ব্যাবসা শুরু করেন। বছরের শেষে তারা দেখলেন 13400 টাকা লাভ হয়েছে। সেই লাভ থেকে ব্যাংকের বছরের কিস্তি 5000 টাকা শোধ দেওয়ার পর বাকি টাকা তারা মূলধনের অনুপাতে ভাগ করে নিলেন। লভ্যাংশ থেকে কে কত টাকা পাবেন হিসাব করে লিখি।
298. দুই বছরের মধ্যে টাকা ফেরত দিলে কোনো সুদ দিতে হবে না এই শর্তে তিন বন্ধু একটি সমবায় ব্যাংক থেকে যথাক্রমে 6000 টাকা, 8000 টাকা, ও 5000 টাকা ধার নিয়ে যৌথভাবে চারটি সাইকেল রিকশা ক্রয় করেন। দুই বছর পর হিসাব করে দেখা যায় সমস্ত খরচ-খরচা বাদ দিয়ে মোট 30400 টাকা আয় হয়েছে। তারা সেই আয় মূলধনের অনুপাতে ভাগ করে নেওয়ার পর প্রত্যেকে নিজ নিজ ঋণের টাকা ব্যাংকে ফিরিয়ে দেন। এখন কার হাতে কত টাকা থাকবে এবং তাদের হাতে থাকা টাকার অনুপাত কী হবে হিসাব করে লিখি।
299. নিয়ামতচাচা ও করবীদিদি যথাক্রমে 30,000 টাকা ও 50,000 টাকা মূলধন দিয়ে যৌথভাবে একটি ব্যাবসা আরম্ভ করলেন। 6 মাস পরে নিয়ামতচাচা আরও 40,000 টাকা লগ্নি করলেন, কিন্তু করবীদিদি ব্যক্তিগত প্রয়োজনে 10,000 টাকা তুলে নিলেন। বছরের শেষে যদি 19,000 টাকা লাভ হয়ে থাকে, তাহলে কে, কত টাকা লাভ পাবেন হিসাব করে দেখি।
300. আমাদের স্কুলের প্রথম শ্রেণির 24 জন শিশুর মধ্যে একবাক্স সন্দেশ সমান ভাগে ভাগ করে দিলাম এবং প্রত্যেকে 5 টি করে গোটা সন্দেশ পেল। যদি শিশুর সংখ্যা 4 জন কম হত, তবে প্রত্যেকে কতগুলি গোটা সন্দেশ পেত তা ভেদতত্ত্ব প্রয়োগ করে হিসাব করি।
301. একটি পুকুর কাটতে 50 জন গ্রামবাসীর 18 দিন সময় লেগেছে। পুকুরটি 15 দিনে কাটতে হলে অতিরিক্ত কতজন লোককে কাজ করতে হবে তা ভেদতত্ত্ব প্রয়োগ করে হিসাব করি।
302. \(x\) ডেসিমিটার গভীর একটি কূপ খনন করার জন্য মোট ব্যয়ের এক অংশ \(x\)-এর সঙ্গে সরলভেদে এবং অপর অংশ \(x^2\)-এর সঙ্গে সরলভেদে পরিবর্তিত হয়। যদি 100 ডেসিমিটার এবং 200 ডেসিমিটার কূপ খনন করার জন্য যথাক্রমে 5000 টাকা এবং 12000 টাকা ব্যয় হয়, তবে 250 ডেসিমিটার গভীর কূপ খননের জন্য কত ব্যয় হবে হিসাব করে লিখি।
303. পাশের চিত্রে দুটি বৃত্ত পরস্পরকে C ও D বিন্দুতে ছেদ করে। D ও C বিন্দুগামী দুটি সরলরেখা একটি বৃত্তকে যথাক্রমে A ও B বিন্দুতে এবং অপর বৃত্তকে E ও F বিন্দুতে ছেদ করে। ∠DAB = 75° হলে, ∠DEF-এর মান
(a) 75° (b) 70° (c) 60° (d) 105°
304. পাশের চিত্রে P ও Q কেন্দ্রবিশিষ্ট বৃত্তদুটি B ও C বিন্দুতে ছেদ করেছে। ACD একটি সরলরেখাংশ। ∠ARB = 150°, ∠BQD = x° হলে, x-এর মান নির্ণয় করি।
305. পাশের চিত্রে দুটি বৃত্ত পরস্পর P ও Q বিন্দুতে ছেদ করে। ∠QAD = 80° এবং ∠PDA = 84° হলে, ∠QBC ও ∠BCP-এর মান নির্ণয় করি।
306. \(x=3+2\sqrt2\) হলে, \(x+\cfrac{1}{x}\) এর মান লিখি ।
307. একটি সমকোণী ত্রিভুজের সূক্ষ্মকোণ দুটির অন্তর \(\cfrac{2π}{5}\) হলে, ষষ্টিক পদ্ধতিতে ওই কোণদ্বয়ের মান লিখি।
308. একটি ঘড়ির ঘণ্টার কাটার প্রান্তবিন্দু 1 ঘণ্টা আবর্তনে যে পরিমাণ কোণ উৎপন্ন করে তার বৃত্তীয় মান লিখি।
309. নীচের কোন ত্রিভুজ জোড়া সদৃশ হিসাব করে লিখি।
310. \(x^2+ (p-3)x+p=0\) সমীকরণের বীজগুলি বাস্তব ও সমান হলে, সমাধান না করে প্রমাণ করো \(p\) এর মান \(1\) ও \(9\) হবে।