\(\angle P+\angle Q=90°\) হলে দেখাও যে, \(\sqrt{\cfrac{sin P}{cos Q}-sin P cos Q}=cos P\)
Loading content...

\(\sqrt{\cfrac{\sin P}{\cos Q}-\sin P \cos Q}\)
\(=\sqrt{\cfrac{\sin P}{\cos (90°-P)}-\sin P \cos ⁡(90°-P)}\)
\(=\sqrt{\cfrac{\sin P}{\sin P}-\sin P \sin P}\)
\(=\sqrt{\cfrac{\sin P}{\sin P}-\sin^2 P }\)
\(=\sqrt{1-\sin^2 P }\)
\(=\sqrt{\cos^2 P }\)
\(=cos⁡P\) (প্রমানিত)

Similar Questions