সমাধান কর: \(\cfrac{x-2}{x+2}+6\left(\cfrac{x-2}{x-6}\right)=1\) Madhyamik 2003


\(\cfrac{x-2}{x+2}+6\left(\cfrac{x-2}{x-6}\right)=1\)
বা, \(\cfrac{6(x-2)}{x-6}=1-\cfrac{x-2}{x+2}\)
বা, \(\cfrac{6(x-2)}{x-6}=\cfrac{x+2-x+2}{x+2}\)
বা, \(\cfrac{6(x-2)}{x-6}=\cfrac{4}{x+2}\)
বা, \(\cfrac{3(x-2)}{x-6}=\cfrac{2}{x+2}\)
বা, \(3(x^2-4)=2(x-6)\)
বা, \(3x^2-12-2x+12=0\)
বা, \(3x^2-2x=0\)
বা, \(x(3x-2)=0\)

\(\therefore \) হয়, \(x=0\)
অথবা, \(3x-2=0\) বা, \(x=\cfrac{2}{3}\)
\(\therefore\) নির্ণেয় সমাধান \(x=0\) অথবা \(\cfrac{2}{3} \) (Answer)

Similar Questions