1. \((a-2)x^2+3x+5=0\) সমীকরণটি \(a\) এর কোন মানের জন্য দ্বিঘাত সমীকরণ হবে না তা নির্ণয় করি ।
(a) \(a=0\) (b) \(a=2\) (c) \(a=4\) (d) \(a=-2\)
2. \((a-2)x^2+3x+5=0\) সমীকরণটি \(a\) এর কোন মানের জন্য দ্বিঘাত সমীকরণ হবে না তা নির্ণয় করি ।
3. যদি \(ax^2+7x+b=0\) দ্বিঘাত সমীকরণের দুটি বীজ \(\cfrac{2}{3}\) ও \(-3\) হয় তবে \(a\) ও \(b\) -এর মান নির্ণয় করি ।
4. \(5x^2+2x-3=0\) দ্বিঘাত সমীকরনের দুটি বীজ \(\alpha\) ও \(\beta\) হলে, \(α^2+β^2\) এর মান নির্ণয় করি ।
5. \(5x^2+2x-3=0\) দ্বিঘাত সমীকরনের দুটি বীজ \(\alpha\) ও \(\beta\) হলে, \(α^3+β^3\) এর মান নির্ণয় করি ।
6. \(5x^2+2x-3=0\) দ্বিঘাত সমীকরনের দুটি বীজ \(\alpha\) ও \(\beta\) হলে, \(\cfrac{1}{α}+\cfrac{1}{β}\) এর মান নির্ণয় করি ।
7. \(5x^2+2x-3=0\) দ্বিঘাত সমীকরনের দুটি বীজ \(\alpha\) ও \(\beta\) হলে, \(\cfrac{α^2}{β}+\cfrac{β^2}{α}\) এর মান নির্ণয় করি ।
8. 10 সেমি দৈর্ঘ্যের ব্যাসার্ধের দুটি সমান বৃত্ত পরস্পরকে ছেদ করে এবং তাদের সাধারণ জ্যা- এর দৈর্ঘ্য 12 সেমি। বৃত্ত দুটির কেন্দ্রদ্বয়ের মধ্যে দূরত্ব নির্ণয় করি ।
9. 5 সেমি দৈর্ঘ্যের ব্যাসার্ধের একটি বৃত্তে AB এবং AC দুটি সমান দৈর্ঘ্যের জ্যা। বৃত্তের কেন্দ্র ABC ত্রিভুজের বাইরে অবস্থিত। AB=AC=6 সেমি হলে, BC জ্যা-এর দৈর্ঘ্য নির্ণয় করি।
10. P ও Q কেন্দ্রবিশিষ্ট দুটি বৃত্ত A ও B বিন্দুতে ছেদ করে। A বিন্দু দিয়ে PQ-এর সমান্তরাল সরলরেখা বৃত্তদুটিকে যথাক্রমে C ও D বিন্দুতে ছেদ করে। PQ=5 সেমি হলে, CD-এর দৈর্ঘ্য কত তা নির্ণয় করি ।
11. p:q=5:7 এবং p-q=-4 হলে, 3p+4q এর মান নির্ণয় করি ।
12. 23,30,57 এবং 78-এর প্রত্যেকটি থেকে কত বিয়োগ করলে বিয়োগফলগুলি সমানুপাতী হবে নির্ণয় করি ।
13. p,q,r,s-এর প্রত্যেকটির থেকে কত বিয়োগ করলে বিয়োগফলগুলি সমানুপাতী হবে নির্ণয় করি ।
14. \(\cfrac{a}{2}=\cfrac{b}{3}=\cfrac{c}{4}=\cfrac{2a-3b+4c}{p}\) হলে, \(p\)-এর মান নির্ণয় করি।
15. \(\cfrac{3x-5y}{3x+5y}=\cfrac{1}{2}\) হলে, \(\cfrac{3x^2-5y^2}{3x^2+5y^2} \) এর মান নির্ণয় করি ।
16. \(x,12,y,27\) ক্রমিক সমানুপাতী হলে, \(x\) ও \(y\)-এর ধনাত্মক মান নির্ণয় করি।
17. (√5+√2) ÷√7=1/7 (√35+a) হলে, a-এর মান নির্ণয় করি ।
18. পাশের চিত্রে বৃত্তের কেন্দ্র O এবং BOA বৃত্তের ব্যাস। বৃত্তের P বিন্দুতে অঙ্কিত স্পর্শক বর্ধিত BA কে T বিন্দুতে ছেদ করে। ∠PBO=30°হলে,∠PTAএর মান নির্ণয় করি।
19. পাশের চিত্রে ABC ত্রিভূজটি একটি বৃত্তে পরিলিখিত এবং বৃত্তকে P,Q,R বিন্দুতে স্পর্শ করে। যদি AP=4 সেমি,BP=6 সেমি,AC=12 সেমি এবং BC=x সেমি হয়,তবে x এর মান নির্ণয় করি।
20. \(m+ \cfrac{1}{m}=\sqrt{3}\) হলে, \(m^2+\cfrac{1}{m^2}\) - এর সরলতম মান নির্ণয় করি ।
21. \(m+ \cfrac{1}{m}=\sqrt{3}\) হলে, \(m^3+\cfrac{1}{m^3}\) - এর সরলতম মান নির্ণয় করি ।
22. \(x=\sqrt7+\sqrt6\) হলে \(x-\cfrac{1}{x}\) এর সরলতম মান নির্ণয় করি ।
23. \(x=\sqrt7+\sqrt6\) হলে \(x+\cfrac{1}{x}\) এর সরলতম মান নির্ণয় করি ।
24. \(x=\sqrt7+\sqrt6\) হলে \(x^2+\cfrac{1}{x^2}\) এর সরলতম মান নির্ণয় করি ।
25. \(x=\sqrt7+\sqrt6\) হলে \(x^3+\cfrac{1}{x^3}\) এর সরলতম মান নির্ণয় করি ।
26. যদি \(a=\cfrac{√5+1}{√5-1}\) ও \(b=\cfrac{√5-1}{√5+1}\) হয়, তবে \(\cfrac{a^2+ab+b^2}{a^2-ab+b^2}\) এর মান নির্ণয় করি ।
27. যদি \(a=\cfrac{√5+1}{√5-1}\) ও \(b=\cfrac{√5-1}{√5+1}\) হয়, তবে \(\cfrac{(a-b)^3}{(a+b)^3}\) এর মান নির্ণয় করি ।
28. যদি \(a=\cfrac{√5+1}{√5-1}\) ও \(b=\cfrac{√5-1}{√5+1}\) হয়, তবে \(\cfrac{3a^2+5ab+3b^2} এর মান নির্ণয় করি ।{3a^2-5ab+3b^2}\)
29. যদি \(a=\cfrac{√5+1}{√5-1}\) ও \(b=\cfrac{√5-1}{√5+1}\) হয়, তবে \(\cfrac{a^3+b^3}{a^3-b^3}\) এর মান নির্ণয় করি ।
30. যদি \(x=2+√3\) এবং \(y=2-√3\) হয়, তবে \(x-\cfrac{1}{x}\) এর মান নির্ণয় করি ।