1. \( sec^227° - cot^263°\) -এর সরলতম মান 1 । Madhyamik 2018
2. \(x=2+\sqrt3\) এবং \(x+y=4\) হলে \(xy+\cfrac{1}{xy}\) এর সরলতম মান নির্ণয় করো । Madhyamik 2020
3. \(sin^2θ+\cfrac{1}{1+tan^2θ}\)-এর সরলতম মান নির্ণয় করাে।
(a) \(2\) (b) \(1\) (c) \(0\) (d) \(\sqrt3\)
4. \(x=\sqrt3+\sqrt2\) হলে \(x^3-\cfrac{1}{x^3}\) এর সরলতম মান নির্ণয় কর ।
5. \(m^2+\cfrac{1}{m^2}\) - এর সরলতম মান নির্ণয় করি ।
6. \(m^3+\cfrac{1}{m^3}\) - এর সরলতম মান নির্ণয় করি ।
7. \(x-\cfrac{1}{x}\)
8. \(x+\cfrac{1}{x}\)
9. \(x^2+\cfrac{1}{x^2}\)
10. \(x^3+\cfrac{1}{x^3}\)
11. \(\Big[\cfrac{1}{√2+1}+\cfrac{1}{√3+√2}+\cfrac{1}{√4+√3}\Big]\) -এর সরলতম মান লিখি ।
12. PQRS একটি বৃত্তস্থ ট্রাপিজিয়াম। PQ বৃত্তের একটি ব্যাস এবং PO|| SR যদি \(\angle\)QRS= 110° হয়, তবে \(\angle\)QSR-এর মান
(a) 20° (b) 25° (c) 30° (d) 40°
13. O কেন্দ্রীয় বৃত্তে \(\bar{AB}\) একটি ব্যাস। \(\bar{AB}\) ব্যাসের বিপরীত পার্শ্বে পরিধির ওপর C এবং D এরূপ দুটি বিন্দু যেন \(\angle\)AOC=130° এবং \(\angle\)BDC=x° হলে x এর মান-
(a) 25° (b) 50° (c) 60° (d) 65°
14. \(\triangle\)ABC এর BC বাহুর সমান্তরাল সরলরেখা AB ও AC বাহুকে যথাক্রমে P ও Q বিন্দুতে ছেদ করে। AP=QC, AB=12 সেমি, AQ=2 সেমি হল, CQ=কত?
(a) 4 সেমি (b) 6 সেমি (c) 9 সেমি (d) কোনোটিই নয়
15. \(\triangle\)ABC এর BC বাহুর সমান্তরাল সরলরেখা AB ও AC বাহুকে যথাক্রমে P ও Q বিন্দুতে ছেদ করে। AP:PB=2:1 এবং AC=18 সেমি হলে, AQ=কত?
(a) 12 সেমি (b) 9 সেমি (c) 6 সেমি (d) কোনটিই নয়।
16. \(\triangle\) ABC এর BC বাহুর সমান্তরাল সরলরেখা AB ও AC বাহুকে যথাক্রমে P ও Q বিন্দুতে ছেদ করে। AP=18 সেমি QC=9 সেমি এবং AQ=2PB হলে, PB=কত ?
(a) 6 সেমি (b) 12 সেমি (c) 18 সেমি (d) 9 সেমি
17. ABCD ট্রাপিজিয়ামের AD\(\parallel\)BC । BC এর সমান্তরাল একটি সরলরেখা AB ও DC কে যথাক্রমে P ও Q বিন্দুতে ছেদ করেছে । AP:PB=2:1 হলে, DQ:QC= কত?
(a) 1:1 (b) 1:2 (c) 1:4 (d) 2:1
18. \(\triangle\)ABC এর BC বাহুর সমান্তরাল সরলরেখা AB ও AC বাহুকে যথাক্রমে D ও E বিন্দুতে ছেদ করে । AB=20 সেমি, BD=14 সেমি হলে, DE:BC=কত?
(a) 7:10 (b) 5:17 (c) 3:10 (d) 7:17
19. \(\triangle\)ABC এর BC বাহুর সমান্তরাল সরলরেখা AB ও AC বাহুকে যথাক্রমে P ও Q বিন্দুতে ছেদ করেছে । AB=3PB এবং BC=18 সেমি হলে PQ=কত?
(a) 10 সেমি (b) 9 সেমি (c) 12 সেমি (d) 8 সেমি
20. PQRS বৃত্তস্থ চতুর্ভুজের PS বাহুটি বৃত্তের একটি ব্যাস। \(\angle\)PQR = 120° হলে \(\angle\)SPR-এর মান কত?
(a) 90° (b) 30° (c) 60° (d) 120°
21. ABC ত্রিভুজের B সমকোণ। ওই ত্রিভুজের অতিভুজ \(\sqrt{15}\) ও অন্য দুটি বাহুর সমষ্টি ৪ হলে (cosA + cosC)-এর মান কত হবে ?
(a) \(\cfrac{8}{\sqrt{13}}\) (b) \(\cfrac{-8}{\sqrt{15}}\) (c) \(\cfrac{-8}{\sqrt{13}}\) (d) \(\cfrac{8}{\sqrt{15}}\)
22. একটি সমকোণী ত্রিভুজের সূক্ষকোণ দুটি \(\theta\) ও \(\phi\) । যদি \(tan\theta =\cfrac{5}{12}\) হয় তবে \(sin\phi\) -এর মান কত?
(a) \(\cfrac{12}{13}\) (b) \(\cfrac{5}{13}\) (c) \(\cfrac{1}{4}\) (d) \(\cfrac{10}{13}\)
23. ABC ত্রিভুজের পরিকেন্দ্র O ; A ও B,C ওই কেন্দ্রের বিপরীত পার্শ্বে অবস্থিত। \(\angle\)BOC = 120° হলে \(\angle\)BAC-এর মান হবে
(a) 50° (b) 60° (c) 70° (d) 80°
24. \(\triangle\)ABC-এর \(\angle\)A সমকোণ। A বিন্দু থেকে অতিভুজ BC-এর মধ্যবিন্দু D যােগ করা হল। BC = 10 সেমি. হলে AD-এর মান হয়
(a) 5 সেমি. (b) 6 সেমি (c) 7 সেমি (d) 8 সেমি
25. PORS বৃত্তস্থ চতুর্ভুজের PS বাহুটি বৃত্তের একটি ব্যাস। \(\angle\)PQR = 128° হলে \(\angle\)SPR-এর মান কত?
(a) 30° (b) 38° (c) 60° (d) কোনোটিই নয়
26. A, B এবং C\(^2\)-এর সঙ্গে যৌগিক ভেদে আছে। A = 144 হবে যখন B = 4 এবং C = 3 হয়। তাহলে ভেদ ধ্রুবকের মান হবে
(a) \(\frac{1}{4}\) (b) \(\frac{1}{2}\) (c) \(\frac{1}{3}\) (d) \(\frac{1}{5}\)
27. যদি \(x=7+4\sqrt3\) হয়, তবে, \(\cfrac{x^3}{x^6+7x^3+1}\) এর মান নির্ণয় কর ।
(a) \(\cfrac{1}{2737}\) (b) \(\cfrac{1}{2730}\) (c) \(\cfrac{1}{2710}\) (d) \(\cfrac{1}{2709}\)
28. \(\cfrac{\sqrt{8}+\sqrt{12}}{\sqrt{32}+\sqrt{48}}\) -এর সরলতম মান
(a) \(\cfrac{1}{3}\) (b) \(\cfrac{1}{4}\) (c) \(\cfrac{1}{2}\) (d) \(\cfrac{1}{\sqrt2}\)
29. ABC ত্রিভূজের অন্তঃকেন্দ্র O । যদি \(\angle\)BOC=120° হয়, তবে \(\angle\)BAC এর মান কত ?
(a) 60° (b) 90° (c) 45° (d) 120°
30. \(\cfrac{1}{\sqrt{1}+\sqrt{2}}+\cfrac{1}{\sqrt{2}+\sqrt{3}}+\) \(\cfrac{1}{\sqrt{3}+\sqrt{4}}+.....+\cfrac{1}{\sqrt{99}+\sqrt{100}}\) এর সরলতম মান হল
(a) 100 (b) 99 (c) 9 (d) 1
31. \((1+\sqrt2+\sqrt3)(1-\sqrt2+\sqrt3)\) এর সরলতম মান কত ?
(a) \(2(\sqrt3-2)\) (b) \(2(\sqrt3-1)\) (c) \(2(1+\sqrt3)\) (d) \(1+\sqrt3\)
32. \(x = 3+2√2\) হলে, \(\left(√x + \cfrac{1}{√x}\right)\) এর মান নির্ণয় করো।
33. কোনো তথ্যসমূহের যদি \(∑_{i=1}^n (x_i-7)\) \(=-8\) এবং \(∑_{i=1}^n=(x_i+3)=72\) হয়, তবে \(\bar{x}\) ও \(n\) এর মান নির্ণয় করো।
34. \(u_i=\cfrac{x_i-20}{10}\) ,\(∑f_i u_i=50\), \(∑f_i=100\) হলে \(\bar{x}\) এর মান নির্ণয় করো।
35. \(∠A+∠B = 90°\) হলে \(1+\cfrac{tanA}{tanB}\)-এর মান নির্ণয় করো।
36. যদি \(tan 2A= cot(A-18°)\) হয় যেখানে \(2A\) ধনাত্মক সূক্ষ্মকোণ তাহলে \(A\) এর মান নির্ণয় করো।
37. যদি \(x ∝\cfrac{1}{y}\) এবং \(y = 10\) হলে \(x = 5\) হয়, তাহলে \(y = 5\) হলে \(x\) এর মান নির্ণয় করো।
38. \(rcosθ =1,rsinθ =√3\) হলে \(r\) ও \(θ\) এর মান নির্ণয় করো।
39. \(a + b : √ab = 2:1\) হলে \(a: b\)-এর মান নির্নয় কর ।
40. \(1-\cfrac{1}{1+\cfrac{1}{a+1}}\) এর সরলতম মান হবে --
(a) \(\cfrac{1}{a+2}\) (b) \(a+1\) (c) \(\cfrac{1}{a+1}\) (d) 0
41. \(cos^2θ-sin^2θ=\cfrac{1}{2}\) হলে, \(cos^4θ-sin^4θ\)-এর মান ––।
42. একটি লম্ববৃত্তাকার শঙ্কুর আয়তন এবং পার্শ্বতলের ক্ষেত্রফলের সাংখ্যমান সমান। শঙ্কুটির উচ্চতা এবং ব্যাসার্ধের দৈর্ঘ্য যথাক্রমে \(h\) একক এবং \(r\) একক হলে, \(\left(\cfrac{1}{h^2} +\cfrac{1}{r^2}\right)\) এর মান নির্ণয় করো।
43. নীচের পরিসংখ্যা বিভাজনের যৌগিক গড় 50 এবং মোট পরিসংখ্যা 120 হলে, \(f_1\) ও \(f_2\) এর মান নির্ণয় কর ।
44. \(x^2-3x+k=10\) সমীকরণের বীজদ্বয়ের গুণফল -2 হলে \(k\)-এর মান হবে ____।
45. \(∠A+∠B=90°\) হলে \(1+\tan A \div \tan B\) -এর মান নির্ণয় করো।
46. △ABC -এর AB = \((2a - 1)\) সেমি, AC = \(2\sqrt{2a}\) সেমি এবং BC = \((2a +1)\) সেমি হলে, ∠BAC -এর মান লেখো । Madhyamik 2017
47. \( tan (θ + 15°) = √3\) হলে, \(sinθ + cosθ\) -এর মান নির্ণয় করো । Madhyamik 2017
48. যদি \(cos^2 θ - sin^2 θ = \cfrac{1}{2}\) হয়, তাহলে \(tan^2 θ\) -এর মান নির্ণয় করো । Madhyamik 2018
49. \(\cfrac{cos53^o}{sin37^o}\)-এর সরলতম মান _____। Madhyamik 2019
50. \(sin10θ=cos8θ\) এবং \(10θ\) ধনাত্মক সূক্ষ্মকোণ হলে, \(tan9θ\)-এর মান নির্ণয় করো । Madhyamik 2019
51. প্রথম \((2n + 1)\) সংখ্যক ক্রমিক স্বাভাবিক সংখ্যার মধ্যবর্তী সংখ্যা \(\cfrac{n+103}{3}\)হলে, \(n\) -এর মান নির্ণয় করো । Madhyamik 2019
52. \(5x^2−2x+3=0\) দ্বিঘাত সমীকরণের বীজদুটি \(α\) ও \(β\) হলে \(\cfrac{1}{α}+\cfrac{1}{β}\) এর মান নির্ণয় করো । Madhyamik 2020
53. যদি \(u_i=\cfrac{x_i−35}{10} , Σf_iu_i=30\) এবং \(Σf_i=60\) হয়; তাহলে \(\bar{x}\) এর মান নির্ণয় করো । Madhyamik 2020
54. \(\alpha\) ও \(\beta\) পরস্পর পূরক কোণ হলে, \((1 -\sin^2\alpha)\) \((1 - \cos^2\alpha)\) \((1 + \cot^2 \beta)\) \((1 + \tan^2\beta)\)-এর মান নির্ণয় করাে। Madhyamik 2016
55. \(\left[ \cfrac{\sqrt{2}(2+\sqrt3)}{\sqrt3(\sqrt3+1)}+\cfrac{\sqrt{2}(2-\sqrt3)}{\sqrt3(\sqrt3-1)}\right]\) এর সরলতম মান কত ? Madhyamik 2013
56. \(a=\cfrac{\sqrt5+1}{\sqrt5-1}\) এবং \(b=\cfrac{\sqrt5-1}{\sqrt5+1}\) হলে \(\cfrac{a^2+ab+b^2}{a^2-ab+b^2}\) এর মান নির্ণয় করো । Madhyamik 2012
57. \(\tan 70° \times \tan 20°\) -এর সরলতম মান লেখাে। Madhyamik 2012
58. \(A \propto B\); যখন \(A=2\) তখন \(B=14\) হয় । \(A=5\) হলে \(B\) এর মান নির্ণয় করো । Madhyamik 2011
59. \(x=\sqrt3+\sqrt2\) হলে \(x^3+\cfrac{1}{x^3}\) এর মান নির্ণয় করো । Madhyamik 2010
60. \(\tan(x+15°)=1\) \((0°\lt x\lt 90°)\) হলে \(\tan x\) এর মান নির্ণয় করো । Madhyamik 2010
61. \(x=\sqrt3+\sqrt2\),\(y=\cfrac{1}{\sqrt3+\sqrt2}\) হলে \((x+y)^2+(x-y)^2\) এর মান নির্ণয় করো । Madhyamik 2009
62. \(x=\sqrt3+\cfrac{1}{\sqrt3}\), \(y=\sqrt3-\cfrac{1}{\sqrt3}\) হলে \(\cfrac{x^2}{y}+\cfrac{y^2}{x}\) - এর মান নির্ণয় করো । Madhyamik 2009
63. যদি \(x=\cfrac{2\sqrt{15}}{\sqrt5+\sqrt3}\) হয়, তবে \(\cfrac{x+\sqrt3}{x-\sqrt3}\) \(+\cfrac{x+\sqrt5}{x-\sqrt5}\) - এর মান নির্ণয় কর । Madhyamik 2005
64. \(x=\cfrac{\sqrt7+\sqrt3}{\sqrt7-\sqrt3}\) এবং \(xy=1\) হলে, \(\cfrac{x^2+3xy+y^2}{x^2-3xy+y^2}\) -এর মান নির্ণয় কর। Madhyamik 2004
65. \((x+1)\cot^2\cfrac{\pi}{2}=2\cos^2\cfrac{\pi}{3}+\cfrac{3}{4}\sec^2\cfrac{\pi}{4}\) \(+4\sin^2\cfrac{\pi}{6}\) হলে \(x\) এর মান নির্ণয় কর । Madhyamik 2003
66. যদি \(2+b\sqrt3=\cfrac{1}{2+\sqrt3}\) হয়, তাহলে \(b\) এর মান \(-1\) ।
67. O কেন্দ্রীয় বৃত্তের দুটি ব্যাসার্ধ OA ও OB-এর মধ্যবর্তী কোণ 130°; A ও B বিন্দুতে অঙ্কিত স্পর্শদ্বয় পরস্পরে T বিন্দুতে ছেদ করে। \(\angle\)ATB ও \(\angle\)ATO -এর মান নির্ণয় করাে।
68. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AB বৃত্তের ব্যাস। \(\angle\)AOD=140° এবং \(\angle\)CAB=50° হলে, \(\angle\)BED-এর মান নির্ণয় করাে।
69. যদি \(x=\cfrac{\sqrt3+1}{\sqrt3-1}\)এবং \(y =\cfrac{\sqrt3-1}{\sqrt3+1}\) হয় তবে, \(\cfrac{x^2-xy+y^2}{x^2+xy+y^2}\) -এর সরলতম মান নির্ণয় করাে
70. যদি \(x =\cfrac{\sqrt3+1}{\sqrt3-1}\) এবং \(xy=1\) হয়, প্রমাণ করাে যে, \(\cfrac{x^2}{y}+\cfrac{y^2}{x}\) এর সরলতম মান 52
71. O কেন্দ্রীয় বৃত্তের AB একটি ব্যাস। P পরিধির উপরিস্থিত যে কোনাে একটি বিন্দু। \(\angle\)POA=120° হলে \(\angle\)PBO-এর মান নির্ণয় করাে।
72. ABCD বৃত্তস্থ চতুর্ভুজের AB \(\parallel\) DC, বৃত্তের কেন্দ্র O। \(\angle\)BOC=80°, \(\angle\)ACO=10° হলে \(\angle\)BAD-এর মান নির্ণয় করাে।
73. \(x^2-3x+5=0\) সমীকরণের বীজদ্বয় \(\alpha\) ও \(\beta\) হলে \((\alpha+\beta)\left(\cfrac{1}{\alpha^2}+\cfrac{1}{\beta^2}\right)\) এর মান নির্ণয় করাে।
74. \(3\sqrt{48}-4\sqrt{75}+\sqrt{192}\) - এর মান শূন্য ।
75. ABCD একটি বৃত্তস্থ চতুর্ভুজ, যার \(\angle\)BCD=100°, \(\angle\)ABD=70°, \(\angle\)ADB-এর মান নির্ণয় করো ।
76. \(x=\sqrt2 +1\) হলে \(x^4+\cfrac{1}{x^4}\) এবং \(x^4-\cfrac{1}{x^4}\) এর মান নির্ণয় করো ।
77. যদি \(b+c=a^2\), \(c+a=b^2\), \(a+b=c^2\) হয় তাহলে \(\cfrac{1}{1+a} +\cfrac{1}{1+b}+\cfrac{1}{1+c}\) এর মান নির্ণয় কর ।
(a) 2 (b) \(\infty\) (c) 0 (d) 1
78. যদি \(a = \cfrac{√5+1}{√5-1}\) ও \(b = \cfrac{√5-1}{√5+1}\) হয় তবে, \(\cfrac{a^2+ab+b^2}{a^2-ab+b^2}\) এর মান নির্ণয় কর ।
79. \(x=3+2√2\) হলে, \(x+\cfrac{1}{x}\) -এর মান নির্ণয় করো।
80. \(\cfrac{(5+\sqrt{3})}{(5-\sqrt{3})}=x-\sqrt{15}y\) হলে \(x+y\) এর মান নির্ণয় কর।
81. একটি লম্ব-বৃত্তাকার শঙ্কুর আয়তন ও পার্শ্বতলের ক্ষেত্রফলের সাংখ্যমান সমান। শঙ্কুটির উচ্চতা ও ব্যাসার্ধের দৈর্ঘ্য যথাক্রমে \(h\) এবং \(r\) একক হলে \(\cfrac{1}{h^2}+\cfrac{1}{r^2}\) এর মান লেখ।
82. \(\triangle ABC\) এর অন্তঃকেন্দ্র \(O\) এবং \(\angle BOC=120°\) হলে \(\angle BAC\)-এর মান নির্ণয় কর।
83. \(xcos60^o = \cfrac{2tan45^o}{1+tan^2 45}-\cfrac{1-tan^2 30^o}{1+tan^2 30^o}\) হলে \(x\) এর মান নির্ণয় করো।
84. \(k\)-এর কোন মানের জন্য \(x^2-x=k(2x-1)\) সমীকরণের বীজদ্বয়ের সমষ্টি শূন্য হবে।
85. \(\cfrac{secθ+tanθ}{secθ-tanθ}=2\cfrac{51}{79}\) হলে \(sinθ\) -এর মান নির্ণয় করো।
86. \(x=\sqrt{\cfrac{\sqrt{5}+1}{\sqrt{5}-1}}\) হলে, \(x^2-x-1\) -এর মান নির্ণয় করো।
87. \(cos0° ×cos1° ×cos2° ×…..×cos90° \) এর মান হবে ____।
88. \(\secθ -\tanθ = \cfrac{1}{2}\) হলে \(\secθ\) ও \(\tanθ\) -এর মান নির্ণয় করো।
89. যদি \(a+\cfrac{1}{b}=1\) এবং \(b+\cfrac{1}{c}=1\) হয়, তাহলে \((c+\cfrac{1}{a})\) এবং \((abc + 1)\)-এর মান নির্ণয় করাে।
(a) 1 এবং 0 (b) 0 এবং 1 (c) 0 এবং 0 (d) 1 এবং 1
90. O কেন্দ্রীয় বৃত্তের দুটি জ্যা AB ও CD পরস্পরকে P বিন্দুতে ছেদ করে যদি \(\angle\)AOD = 100° এবং \(\angle\)BOC=70° হয় তাহলে \(\angle\)APC এর মান নির্ণয় করাে।
91. একটি বর্গাকার ভূমিবিশিষ্ট পিতলের প্লেটের দৈর্ঘ্য \(x\) সেমি, বেধ 1 মিলিমি এবং প্লেটটির ওজন 4725 গ্রাম। যদি 1 ঘনসেমি পিতলের ওজন 8.4 গ্রাম হয় তাহলে \(x\)-এর মান কত হবে তা হিসাব করে লিখি ।
92. একটি ব্যাবসায় A মূলধনের \(\cfrac{1}{3}\) অংশ বিনিয়ােগ করে। B, A ও C-এর মােট বিনিয়ােগের সমান নিয়ােজিত করে। 1 বছর পরে 72,000 টাকা লাভ হলে, C কত টাকা পাবে?
(a) 11,000 টাকা (b) 10,000 টাকা (c) 12,000 টাকা (d) 13,000 টাকা
93. \(5x^2-3x+6=0\) সমীকরণের বীজদ্ধয় \(\alpha\) ও \(\beta\) হলে \(\left(\cfrac{1}{\alpha}+\cfrac{1}{\beta}\right)\) এর মান নির্ণয় করো ।
94. ABCD একটি বৃত্তস্থ চতুর্ভুজ। AD ও AB বাহুকে যথাক্রমে E ও F পর্যন্ত বাড়ানাে হল। \(\angle\)CBF=120° হলে, \(\angle\)CDE এর মান কত?
95. \(\triangle\)ABCএর অন্তর্বত্তের কেন্দ্র O বৃত্তটি AB, BC, CA বাহুকে যথাক্রমে P, Q, ও R বিন্দুতে স্পর্শ করে। যদি AP=4cm, BP=6cm, AC=12cm এবং BC=x cm হয়, তাহলে x এর মান নির্ণয় করাে।
96. ABCD বৃত্তস্থ চতুর্ভুজের AB ও AD বাহুকে যথাক্রমে E ও F পর্যন্ত বর্ধিত করা হল। \(\angle\)CBE=120° হলে \(\angle\)CDF এর মান বের করাে।
97. \(x=2+\sqrt3\) এবং \(y = 2-\sqrt3\) হলে \(3x^2-5xy+3y^2\) এর সরলতম মান নির্ণয় করাে।
98. দুটি। আয়তঘনের মাত্রাগুলির দৈর্ঘ্য যথাক্রমে \(4, 6, 4\) একক এবং \(8, 2h-1, 2\) একক। যদি আয়তঘন দুটির ক্ষেত্রফল সমান হলে \(h\) এর মান কত?
99. O কেন্দ্রীয় বত্তের AC ব্যাস এবং DC||EB, \(\angle\)AOB=80° এবং \(\angle\)ACE=10° হলে, \(\angle\)BEDএর মান নির্ণয় করাে।
100. যদি \(\triangle\)ABC এর BC||DE, \(\frac{AD}{DB}=\frac{2}{5}\) এবং AC=21 সেমি হয় তবে AE এর মান নির্ণয় করাে।
101. \(x=\sqrt5+2\) হলে, \(x^3-\cfrac{1}{x^3}\)-এর মান নির্ণয় করাে।
102. \(3x^2+8x+2=0\) সমীকরণের বীজদ্বয় \(\alpha\) এবং \(\beta\) হলে \(\cfrac{1}{\alpha^2}+\cfrac{1}{\beta^2}\) এর মান নির্ণয় করাে।
103. \(a \propto b^2\) ও \(1+b \propto 6\) এবং যদি \(a=1\) হলে \(c=9\) ও \(b =5\) হয় c -এর মান নির্ণয় করাে।
104. \(x^2-x=k(2x-1)\) সমীকরণের বীজদ্বয় সমান ও বিপরীত চিহ্নযুক্ত হলে \(k\) এর মান নির্ণয় করাে।
105. \(a:b=2:3\) হলে \(5a:6b\) এর মান \(1:1\) হবে।
106. \(x=\cfrac{2\sqrt{15}}{\sqrt5+\sqrt3}\) হলে, \(\cfrac{x+\sqrt3}{x-\sqrt3}+\cfrac{x+\sqrt5}{x-\sqrt5}\) এর মান নির্ণয় করাে।
107. \(x=7+4\sqrt3\) হলে \(x +\cfrac{1}{x}\) এর মান নির্ণয় করাে।
108. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AB ব্যাস । \(\angle\)ADC=120° হলে, \(\angle\)BAC-এর মান
(a) 50° (b) 60° (c) 40° (d) 30°
109. O কেন্দ্রীয় বৃত্তে AB একটি ব্যাস। ABCD বৃত্তস্থ চতুর্ভুজ। \(\angle\)ADC=120° হলে \(\angle\)BAC-এর মান হবে –
(a) 60° (b) 40° (c) 50° (d) 30°
110. \(4x^2+4(3m+1)x+(m-7)-20=0\) দ্বিঘাত সমীকরণটির বীজ দুটি পরস্পর অনোন্যক হলে \(m\) -এর মান নির্ণয় করাে।
111. \(x=\sqrt3+\sqrt2\) হলে \(x-\cfrac{1}{x}\) এর সরলতম মান কত?
112. \(ax^2+bx+c=0\) সমীকরণের বীজ দুটি \(\alpha\) ও \(\beta\) হলে \(\left(1+\cfrac{\alpha}{\beta}\right)\left(1+\cfrac{\beta}{\alpha}\right)\) -এর মান নির্ণয় করাে।
113. \(\triangle\)ABC এর AB= (2a-1) সেমি, AC= 2√2a সেমি, BC= (2a+1) সেমি হলে \(\angle\)BAC-এর মান লেখো।
114. যদি, \(\cfrac{x}{y+z}=\cfrac{y}{z+x}=\cfrac{z}{x+y}\) হয় তবে প্রমাণ করো যে প্রতিটি অনুপাতের মান \(\cfrac{1}{2}\) অথবা -1-এর সমান। Madhyamik 2024
115. \(\tan\cfrac{3\pi}{20}\cdot \tan\cfrac{4\pi}{20}\cdot\tan\cfrac{5\pi}{20}\cdot\tan\cfrac{6\pi}{20}\) \(\cdot\tan\cfrac{7\pi}{20}\) এর সরলতম মান নির্ণয় করো ।
116. \((a+b) : \sqrt{ab} = 2:1, a:b\) এর মান নির্ণয় করো।
117. এই তথ্যটির গড় \(20.6\), \(a\) এর মান নির্ণয় করো।
118. যদি \(x=\cfrac{\sqrt3+1}{\sqrt3-1}\) এবং \(xy=1\) হলে \(\cfrac{x^3-y^3}{x^3+y^3}\) এর মান নির্নয় কর ।
119. যদি \(\cfrac{x}{y+z}=\cfrac{y}{z+x}=\cfrac{z}{x+y}\) হয়, তবে প্রমাণ করি যে প্রতিটি অনুপাতের মান \(\cfrac{1}{2}\) অথবা 1 এর সমান।
120. \(x^2-x=k(2x-1)\) সমীকরণের বীজদ্বয়ের সমষ্টি শূন্য হলে, \(k\)-এর মান নির্ণয় করো।
121. যদি \(\cfrac{x}{y+z}=\cfrac{y}{z+x}=\cfrac{z}{x+y}\) হয়, তবে প্রমাণ করি যে প্রতিটি অনুপাতের মান \(\cfrac{1}{2}\) অথবা (-1) এর সমান।
122. যদি \(\cfrac{x}{y+z}=\cfrac{y}{z+x}=\cfrac{z}{x+y}\) হয়, তবে প্রমাণ কর যে প্রতিটি অনুপাতের মান \(\cfrac{1}{2}\) অথবা (-1) এর সমান।
123. \(\triangle\)ABC-তে AB \(= (2p-1)\) সেমি, AC\(=2\sqrt2p\) সেমি এবং BC\(=(2p+1)\) সেমি হলে \(\angle\)BAC এর মান কত হবে।
124. \(x^2-x=k(2x-1)\) দ্বিঘাত সমীকরণের বীজদ্বয়ের সাংখ্যমান সমান কিন্তু বিপরীত চিহ্নবিশিষ্ট হলে, \(k\)-এর মান নির্ণয় করো।
125. যদি \(\cfrac{x}{y+z}=\cfrac{y}{z+x}=\cfrac{z}{x+y}\) হয়, তবে প্রমাণ করি যে প্রতিটি অনুপাতের মান \(\cfrac{1}{2}\) অথবা (-1) এর সমান।
126. \(\cfrac{a}{1-a}+\cfrac{b}{1-b}+\cfrac{c}{1-c} = 1\) হলে, \(\cfrac{1}{1-a}+\cfrac{1}{1-b}+\cfrac{1}{1-c}\) এর মান নির্ণয় করো। Madhyamik 2022
127. যদি \(a =\cfrac{\sqrt5+1}{\sqrt5-1}\) এবং \(ab = 1\) হয়, তবে \(\left(\cfrac{a}{b}+\cfrac{b}{a}\right)\) - এর মান নির্ণয় করো। Madhyamik 2022
128. \(\tan \theta \cos 60°=\cfrac{{\sqrt3}}{2}\) হলে, \(\sin (\theta-15°)\) এর মান হবে _____ । Madhyamik 2023
129. \(x^2-x=k(2x-1)\) সমীকরণের বীজদ্বয়ের সমষ্টি 2 হলে, K-এর মান নির্ণয় করো। Madhyamik 2023
130. ঊর্ধ্বক্রমে সাজানো \(6, 8, 10, 12, 13, x\) তথ্যের গড় ও মধ্যমা সমান হলে \(x\) এর মান নির্ণয় করো। Madhyamik 2023
131. \(5x^2+2x-7=0\) এই সমীকরণে শ্রীধর আচার্যের সূত্র প্রয়োগ করে \(x=\cfrac{k±12}{10}\) পাওয়া গেলে \(k\) এর মান কী হবে হিসাব করে লিখি ।
132. \(m\) এর মান কত হলে, \(4x^2+4(3m-1)x+(m+7)=0\) দ্বিঘাত সমীকরণের বীজ দুটি পরস্পর অন্যোন্যক হবে ।
133. \(\cfrac{1}{α}+\cfrac{1}{β}\)
134. \(x^2-22x+105=0\) সমীকরণের বীজদ্বয় \(α\) এবং \(β\) হলে, \((α-β)\) এর মান লিখি ।
135. \(x^2-x=k(2x-1)\)সমীকরণের বীজদ্বয়ের সমষ্টি শূন্য হলে, \(k\) এর মান লিখি ।
136. \(x^2+bx+12=0\) এবং \(x^2+bx+q=0\) সমীকরণদ্বয়ের একটি বীজ \(2\) হলে, \(q\) এর মান লিখি ।
137. \(k\) এর মান কত হলে \(x^2+kx+3=0\) দ্বিঘাত সমীকরনের একটি বীজ \(1\) হবে হিসাব করে লিখি ।
138. \(x\) -এর প্রাপ্ত মানদুটি অর্থাৎ \(x=10\) এবং \(x=-7\); \(x^2-3x-70=0\) সমীকরনটি সিদ্ধ করে কিনা যাচাই করি ।
139. যদি \(5x^2+13x+k=0\) দ্বিঘাত সমীকরণের বীজদ্বয় একটি অপরটির অনোন্যক হয়, তবে, \(k\)-এর মান হিসাব করে লিখি ।
140. \(\cfrac{x}{xa+yb+zc}=\cfrac{y}{ya+zb+xc} =\cfrac{z}{za+xb+yc} \) এবং \(x+y+z≠0\) হলে, দেখাই যে, প্রতিটি অনুপাত \(\cfrac{1}{a+b+c}\) এর সমান।
141. \(\cfrac{3x-5y}{3x+5y}=\cfrac{1}{2}\) হলে, \(\cfrac{3x^2-5y^2}{3x^2+5y^2} \) এর মান নির্ণয় করি ।
142. \(x,12,y,27\) ক্রমিক সমানুপাতী হলে, \(x\) ও \(y\)-এর ধনাত্মক মান নির্ণয় করি।
143. যদি \(\cfrac{x}{y+z}=\cfrac{y}{z+x}=\cfrac{z}{x+y}\) হয়, তবে প্রমাণ করি যে প্রতিটি অনুপাতের মান \(\cfrac{1}{2}\) অথবা (-1) এর সমান।
144. ABC সমদ্বিবাহু ত্রিভুজের AB = AC. সমদ্বিবাহু ত্রিভুজটির পরিকেন্দ্র O এবং BC বাহুর যেদিকে A বিন্দু অবস্থিত তার বিপরীত পার্শ্বে কেন্দ্র O অবস্থিত। \(\angle\)BOC= 100° হলে \(\angle\)ABC ও \(\angle\)ABO-এর মান হিসাব করে লিখি।
145. পাশের চিত্রে ΔABC-এর পরিবৃত্তের কেন্দ্র O এবং \(\angle\)AOC = 110°; \(\angle\)ABC-এর মান হিসাব করে লিখি।
146. O কেন্দ্রীয় বৃত্তের ABCD একটি বৃত্তস্থ চতুর্ভুজ। DC বাহুকে P বিন্দু পর্যন্ত বর্ধিতকরা হলো। \(\angle\)BCP = 108° হলে, \(\angle\)BOD-এর মান হিসাব করে লিখি।
147. পাশের চিত্রে O বৃত্তের কেন্দ্র। \(\angle\)OAB = 40°, \(\angle\)ABC= 120°, \(\angle\)BCO = y° এবং \(\angle\)COA = x° হলে, x ও y-এর মান নির্ণয় করি।
148. পাশের চিত্রে O বৃত্তের কেন্দ্র। \(\angle\)AEB = 110° এবং \(\angle\)CBE = 30° হলে, \(\angle\)ADB -এর মান
(a) 70° (b) 60° (c) 80° (d) 90°
149. পাশের বৃত্তস্থ চতুর্ভুজ ABCD-এর AD ও AB বাহুকে যথাক্রমে E ও F বিন্দু পর্যন্ত বর্ধিত করলাম। \(\angle\)CBF = 120° হলে, \(\angle\)CDE -এর মান হিসাব করে লিখি।
150. পাশের চিত্রের O কেন্দ্রীয় বৃত্তের দুটি ব্যাসার্ধ OA ও OB-এর মধ্যবর্তী কোণ 130°; A ও B বিন্দুতে অঙ্কিত স্পর্শদ্বয় T বিন্দুতে ছেদ করে। \(\angle\)ATB এবং \(\angle\)ATO-এর মান হিসাব করে লিখি।
151. একটি পরিসংখ্যা বিভাজনের গড় 8.1, \(\sum f_i x_i = 132+5k\) এবং \(\sum f_i=20\)হলে, \(k\)-এর মান নির্ণয় করি।
152. যদি \(u_i =\cfrac{x_i-25}{10} ,\sum f_i u_i=20\) এবং \(\sum f_i=100\) হয়, তাহলে \(\bar{x}\)-এর মান নির্ণয় কর ।
153. একটি সমকোণী ত্রিভুজাকারক্ষেত্র ABC-এর অতিভুজ AC-এর দৈর্ঘ্য 100 মিটার এবং AB=50√3 মিটার হলে, \(\angle\)C এর মান নির্ণয় করি।
154. ABC সমকোণী ত্রিভুজ \(\angle\)B=90°, ABর উপর D এমন একটি বিন্দু যে AB: BC: BD =√3:1:1, \(\angle\)ACD -এর মান নির্ণয় করি।
155. \(\cfrac{2 \sin^2 63°+1+2 \sin^2 27°}{3 \cos^2 17°-2+3 \cos^2 73°}\) -এর মান নির্ণয় করি।
156. \(\sin θ=\cfrac{4}{5}\) হলে, \(\cfrac{ cosecθ}{1+\cot θ}\) -এর মান নির্ণয় করে লিখি।
157. \(\tan θ=1\) হলে \(\cfrac{8 \sin θ+5 \cos θ}{\sin^3 θ-2 \cos^3 θ + 7 \cos θ}\) -এর মান নির্ণয় করি।
158. sinθ- cosθ= \(\cfrac{7}{13}\) হলে, sinθ+ cosθ-এর মান নির্ণয় করি।
159. sinθcosθ=\(\cfrac{1}{2}\) হলে, (sinθ+ cosθ) -এর মান হিসাব করে লিখি।
160. \(tan^2 θ+cot^2 θ= \cfrac{10}{3}\) হলে, tanθ + cotθ এবং tanθ- cotθ-এর মান নির্ণয় করি এবং সেখান থেকে tanθ-এর মান হিসাব করে লিখি।
161. \(sec^2 θ+tan^2 θ = \cfrac{13}{12}\) হলে, \(sec^4 θ- tan^4 θ\)-এর মান হিসাব করে লিখি।
162. \(x tan 30° + y cot 60° = 0\) এবং \(2x –y tan 45° = 1\) হলে, \(x\) ও \(y\)-এর মান হিসাব করে লিখি।
163. \(θ (0° ≤ θ ≤ 90°)\) - এর কোন মান / মানগুলির জন্য \(2cos^2θ - 3cosθ +1 = 0\) সত্য হবে নির্ণয় করি।
164. পাশের চিত্রে, DE || BC, BE || XC এবং \(\frac{AD}{DB}=\frac{2}{1}\) হলে, \(\frac{AX}{XB}\) -এর মান নির্ণয় করি।
165. একটি লম্ব বৃত্তাকার শঙ্কুর আয়তন এবং পার্শ্বতলের ক্ষেত্রফলের সাংখ্যমান সমান। শঙ্কুটির উচ্চতা এবং ব্যাসার্ধের দৈর্ঘ্য যথাক্রমে h একক এবং r একক হলে, \(\frac{1}{h^2} +\frac{1}{r^2}\) -এর মান কত তা লিখি।
166. x ও y দুটি চল এবং তাদের সম্পর্কিত মানগুলি
167. x, y-এর সঙ্গে সরলভেদে এবং z-এর সঙ্গে ব্যস্তভেদে আছে। y=5 ও z=9 হলে x= \(\frac{1}{6}\) হয়। x, y ও z-এর মধ্যে সম্পর্ক নির্ণয় করি এবং y=6 ও z= \(\frac{1}{5}\) হলে, x-এর মান হিসাব করে লিখি।
168. PQRS বৃত্তস্থ চতুর্ভুজের PQ, SR বাহু দুটি বর্ধিত করায় T বিন্দুতে মিলিত হলো। বৃত্তের কেন্দ্র O; \(\angle\)POQ=110°, \(\angle\)QOR= 60°, \(\angle\)ROS = 80° হলে \(\angle\)RQS ও \(\angle\)QTR-এর মান হিসাব করে লিখি।
169. সরল করি: \(\cfrac{x+\sqrt{x^2-1}}{x-\sqrt{x^2-1}}+\cfrac{x-\sqrt{x^2-1}}{x+\sqrt{x^2-1}}\) সরলফল 14 হলে, \(x\) এর মান কী কী হবে হিসাব করে লিখি ।
170. \(\cfrac{a^2+ab+b^2}{a^2-ab+b^2}\)
171. \(\cfrac{(a-b)^3}{(a+b)^3}\)
172. \(\cfrac{3a^2+5ab+3b^2}{3a^2-5ab+3b^2}\)
173. \(\cfrac{a^3+b^3}{a^3-b^3}\)
174. \(x-\cfrac{1}{x}\)
175. \(y^2+\cfrac{1}{y^2}\)
176. \(x^3-\cfrac{1}{x^3}\)
177. \(xy+\cfrac{1}{xy}\)
178. \(x=3+2\sqrt2\) হলে, \(x+\cfrac{1}{x}\) এর মান লিখি ।
179. \(\triangle\)ABC-এর AC = BC এবং BC বাহুকে D পর্যন্ত বর্ধিত করলাম। যদি \(\angle\)ACD=144° হয়, তবে ABC ত্রিভুজের প্রতিটি কোণের বৃত্তীয় মান নির্ণয় করি।
180. নীচের পরিসংখ্যা বিভাজনের যৌগিক গড় 50 এবং মোট পরিসংখ্যা 120 হলে, \(f_1\) ও \(f_2\) এর মান নির্ণয় কর ।
181. \(P\) এর মান কত হলে \((P-3)x^2-5x+10=0\) সমীকরণটি দ্বিঘাত সমীকরণ হবে না । \(P= \) _____ Madhyamik 2024
182. \(x^2-22x+105=0\) সমীকরনের বীজদ্বয় \(\alpha, \beta\) হলে \(\cfrac{1}{\alpha}+\cfrac{1}{\beta}\) এর মান নির্ণয় করো । Madhyamik 2024
183. O কেন্দ্রীয় বৃত্তে BOC ব্যাস, ABCD বৃত্তস্থ চতুর্ভূজ, \(\angle\)ADC=110\(^o\) হলে \(\angle\)ACB এর মান নির্ণয় কর । Madhyamik 2024
184. sin(A+B)=1 এবং cos(A-B)=1 হলে cot 2A এর মান নির্ণয় কর । 0\(^o\le\)(A+B)\(\le\)90\(^o\) এবং A\(\ge\)B Madhyamik 2024
185. একটি পরিসংখ্যা বিভাজনের গড় 7, \(\sum f_i x_i=140\) হলে \(\sum f_i\) এর মান নির্ণয় করো । Madhyamik 2024
186. PQR সমকোণী ত্রিভূজের \(\angle\)P=90\(^o\) এবং PS, অতিভূজ QR- এর ওপর লম্ব । প্রমান করো যে, \(\cfrac{1}{PS^2}-\cfrac{1}{PQ^2}=\cfrac{1}{PR^2}\) । Madhyamik 2024
187. ABCD বৃত্তস্থ চতুর্ভুজের \(\angle\)A=120° হলে \(\angle\)C এর বৃত্তীয় মান∶
(a) \(\cfrac{π}{3}\) (b) \(\cfrac{π}{6}\) (c) \(\cfrac{π}{2}\) (d) \(\cfrac{2π}{3}\)
188. \(5x^2+9x+3=0\) সমীকরণের বীজদ্বয় α এবং β হলে, \(\cfrac{1}{α}+\cfrac{1}{β}\) এর মান কত?
(a) 3 (b) -3 (c) \(\cfrac{1}{3}\) (d) -\(\cfrac{1}{3}\)
189. AB, CD দুটি সমান্তরাল জ্যা-এর: প্রত্যেকটির দৈর্ঘ্য 16 সেমি। বৃত্তের ব্যাসার্ধের দৈর্ঘ্য 10 সেমি হলে জ্যা দুটির মধ্যে দূরত্ব –
(a) 12 সেমি (b) 16 সেমি (c) 20 সেমি (d) 5 সেমি
190. \(3x^2+8x+2=0\) সমীকরণের বীজদ্বয় α এবং β হলে, \((\cfrac{1}{α}+\cfrac{1}{β})\) এর মান –
(a) -\(\cfrac{3}{8}\) (b) \(\cfrac{2}{3}\) (c) -4 (d) 4
191. O কেন্দ্রীয় বৃত্তের AB এবং CD দুটি সমান দৈর্ঘ্যের জ্যা। CD এর মধ্যবিন্দু E. \(\angle\)AOB=70° হলে, \(\angle\)COE এর মান
(a) 70° (b) 110° (c) 35° (d) 55°
192. \(3x^2+8x+2=0\) সমীকরণের বীজদ্বয় \(α\) ও \(β\) হলে \(\cfrac{1}{α}+\cfrac{1}{β}\) এর মান
(a) \(-\cfrac{3}{8}\) (b) \(\cfrac{2}{3}\) (c) -4 (d) 4
193. ABCD বৃত্তস্থ চতুর্ভুজের \(\angle\)A=120° হলে \(\angle\)C এর বৃত্তীয় মান
(a) \(\cfrac{π}{2}\) (b) \(\cfrac{π}{3}\) (c) \(\cfrac{π}{6}\) (d) \(\cfrac{π}{4}\)
194. O কেন্দ্রীয় বৃত্তের AB ও CD জ্যা দু’টির দৈর্ঘ্য সমান। \(\angle\)AOB=60° হলে, \(\angle\)COD এর মান
(a) 60° (b) 30° (c) 120° (d) 90°
195. যদি \(u_i=\cfrac{x_i-35}{10}\) ,\(∑f_i u_i=30\) এবং \(∑f_i=60\) হয়, তবে \(\bar{x}\) এর মান –
(a) 40 (b) 20 (c) 80 (d) কোনোটিই নয়
196. \( tan A tan B =1\) হলে \(tan\cfrac{(A+B)}{2}\) এর মান হবে
(a) 1 (b) √3 (c) \(\cfrac{1}{√3}\) (d) কোনোটিই নয়
197. O কেন্দ্রীয় বৃত্তের AB.একটি ব্যাস। P পরিধির উপরিস্থিত যে কোনো একটি বিন্দু। \(\angle\)POA = 120° হলে \(\angle\)PBO -এর পরিমাপ
(a) 30° (b) 60° (c) 90° (d) 120°
198. tanθcos60° = \(\cfrac{√3}{2}\) হলে sin(θ–15°) এর মান-
(a) \(\cfrac{1}{√2}\) (b) 1 (c) √2 (d) 0
199. O কেন্দ্রীয় বৃত্তের AB ব্যাস, P বৃত্তস্থ বিন্দু, \(\angle\)AOP = 10৪° হলে \(\angle\)BPO এর মান হবে
(a) 54° (b) 72° (c) 36° (d) 27°
200. যদি \(x =\sqrt{ 7 + 4√3}\) হয়, তাহলে \(x-\cfrac{1}{x}\) এর মান হবে-
(a) 2 (b) 2√3 (c) 4 (d) 2-√3
201. ABCD বৃত্তস্থ চতুর্ভুজের \(\angle\)A=120°, \(\angle\)C-এর বৃত্তীয় মান-
202. কোনো মুলধনের সরল সুদ প্রতি বছর তার \(\cfrac{1}{6}\) অংশ হয় । 5 বছরে সুদেমূলে 2200 টাকা হলে আসলের পরিমান হল-
(a) 1000 টাকা (b) 1200 টাকা (c) 1400 টাকা (d) 1600 টাকা
203. \(\cfrac{7π}{12}\) - এর ষষ্ঠিক পদ্ধতিতে মান টি হল— Madhyamik 2018
(a) 115° (b) 150° (c) 135° (d) 105°
204. যদি \(p+q=\sqrt{13}\) এবং \(p−q=\sqrt{5}\) হয়, তাহলে \(pq\) -এর মান— Madhyamik 2019
(a) 2 (b) 18 (c) 9 (d) 8
205. কোনো বৃত্তের কেন্দ্র O এবং ব্যাস AB । ABCD বৃত্তস্থ চতুর্ভুজ । \(\angle\)ABC=65° , \(\angle\)DAC=40° হলে \(\angle\)BCD-এর মান — Madhyamik 2019
(a) 75° (b) 105° (c) 115° (d) 80°
206. \(tanα+cotα=2\) হলে \(tan^{13}α+cot^{13}α\) -এর মান— Madhyamik 2019
(a) 13 (b) 2 (c) 1 (d) 0
207. \(\triangle\)ABC এর BC বাহুর সমান্তরাল সরলরেখা AB ও AC বাহুকে যথাক্রমে P ও Q বিন্দুতে ছেদ করে। AQ=2AP হলে PB:QC=কত?
(a) 1:2 (b) 2:1 (c) 1:1 (d) কোনটিই নয়।
208. \(\triangle\)ABC এর BC বাহুর সমান্তরাল সরলরেখা AB ও AC বাহুকে যথাক্রমে P ও Q বিন্দুতে ছেদ করে। PB=AQ,AP=9 সেমি, QC=4 সেমি হলে PB=কত ?
(a) 4সেমি (b) 6 সেমি (c) 9 সেমি (d) 5 সেমি
209. \(\triangle\)ABC এর BC বাহুর সমান্তরাল সরলরেখা AB ও AC বাহুকে যথাক্রমে P ও Q বিন্দুতে ছেদ করে। PB এর দৈর্ঘ্য AP এর দ্বিগুন এবং QC এর দৈর্ঘ্য AQ এর থেকে 3 সেমি বেশি হলে AC এর দৈর্ঘ্য কত ?
(a) 6 সেমি (b) 9 সেমি (c) 12 সেমি (d) 7.5 সেমি
210. \(\triangle\)ABC এর ওপর P ও Q এমন দুটি বিন্দু যে, \(\angle\)ABC=\(\angle\)APQ হয়। AP=3.6 সেমি, QC=1.6 সেমি এবং AQ=4.8 সেমি হলে, PB=কত ?
(a) 1.2 সেমি (b) 2.4 সেমি (c) 6 সেমি (d) কোনোটিই নয়
211. \(\triangle\)ABC এর AD মধ্যমা। E বিন্দুটি AD কে 1:2 অনুপাতে বিভক্ত করে । বর্ধিত BE, AC কে F বিন্দুতে ছেদ করে । AC=10 সেমি হলে, AF=কত?
(a) 5 সেমি (b) 4 সেমি (c) 2 সেমি (d) কোনোটিই নয়
212. \(\triangle\)ABC এর AD মধ্যমা। BC বাহুর সমান্তরাল সরলরেখা AB, AD ও AC বাহুকে যথাক্রমে P,O ও Q বিন্দুতে ছেদ করেছে । PO:OQ=কত?
(a) 1:2 (b) 2:3 (c) 1:1 (d) কোনোটিই নয়
213. sin51\(^o\)=\(\cfrac{a}{\sqrt{a^2+b^2}}\) হলে tan51\(^o\)+tan39\(^o\) - এর মান কত ?
(a) \(\cfrac{a^2-b^2}{ab}\) (b) \(\cfrac{a^2+b^2}{2ab}\) (c) \(\cfrac{a^2+b^2}{ab}\) (d) \(\cfrac{a^2-b^2}{2ab}\)
214. \(9x^2-13x+9=0\) হলে, \(x+\cfrac{1}{x}\) এর মান কত?
(a) \(\cfrac{9}{4}\) (b) \(\cfrac{4}{9}\) (c) \(\cfrac{13}{9}\) (d) 1
215. \(\cfrac{3\sqrt8-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\) এর মান কত?
(a) \(\cfrac{3}{2}\) (b) \(\cfrac{1}{2}\) (c) \(\cfrac{2}{3}\) (d) \(\cfrac{13}{12}\)
216. \(x+\cfrac{1}{x}=-2\) হলে \(x^7+\cfrac{1}{x^6}\) এর মান কত ?
(a) -1 (b) 1 (c) 2 (d) কোনোটিই নয়
217. \(3x^2+(k-1)x+9=0\) দ্বিঘাত সমীকরনের একটি বীজ 3 হলে \(k\) এর মান হবে -
(a) -11 (b) 11 (c) 12 (d) 14
218. \(\cfrac{tan\theta+sec\theta-1}{tan\theta-sec\theta+1}\) এর মান হল -
(a) \(\cfrac{1+cos\theta}{sin\theta}\) (b) \(\cfrac{1+sin\theta}{cos\theta}\) (c) \(\cfrac{1+tan\theta}{sec\theta}\) (d) \(\cfrac{1+sec\theta}{sin\theta}\)
219. \(a+b:\sqrt{ab}=1:1\) হলে \(\sqrt{\cfrac{a}{b}}+\sqrt{\cfrac{b}{a}}\) এর মান কত ?
(a) 1 (b) 2 (c) 3 (d) 4
220. \(sin\theta-cos\theta=\cfrac{7}{13}\) হলে, \(sin\theta+cos\theta\) এর মান হল -
(a) \(\cfrac{13}{17}\) (b) \(\cfrac{17}{13}\) (c) \(\cfrac{13}{7}\) (d) কোনোটিই নয়
221. \(x=\cfrac{\sqrt7+\sqrt3}{\sqrt7-\sqrt3}\) এবং \(xy=1\) হলে \(\cfrac{x^2+xy+y^2}{x^2-xy+y^2}\) -এর মান হল
(a) \(\cfrac{11}{12}\) (b) \(\cfrac{12}{11}\) (c) \(\cfrac{13}{12}\) (d) \(\cfrac{14}{13}\)
222. \(x=\cfrac{2\sqrt{15}}{\sqrt5+\sqrt3}\) হয় তবে, \(\cfrac{x+\sqrt5}{x-\sqrt5}+\cfrac{x+\sqrt3}{x-\sqrt3}\) এর মান কত ?
(a) -1 (b) 0 (c) 1 (d) কোনোটিই নয়
223. \(\cfrac{9}{cosec^2\theta}+4cos^2\theta +\cfrac{5}{1+tan^2\theta}\) এর মান কত ?
(a) 1 (b) 0 (c) 3 (d) 9
224. \(a=3+2\sqrt2\) হলে \(\cfrac{a^6+a^4+a^2+1}{a^3}\) এর মান কত ?
(a) 100 (b) 200 (c) 204 (d) 250
225. \((p+2)x^2-(p-3)x+3p-1=0\) সমীকরণের বীজদ্বয় সমান কিন্তু বিপরীত চিহ্নযুক্ত হলে \(p\) এর মান কত ?
(a) -3 (b) 1 (c) 3 (d) কোনোটিই নয়
226. \(sin^2A+sin^4A=1\) হলে \(tan^2A-tan^4A\) এর মান কত ?
(a) 1 (b) 0 (c) -1 (d) 2
227. \(x=2+\sqrt3\) হলে \(x+\cfrac{1}{x}\) এর মান কত ?
(a) -4 (b) 2 (c) 4 (d) \(2+\sqrt3\)
228. ABCD বৃত্তস্থ চতুর্ভূজের CD কে E পর্যন্ত বর্ধিত করা হল । \(\angle\)ADE=92\(^o\) হলে \(\angle\)ABC এর মান কত ?
(a) 88\(^o\) (b) 29\(^o\) (c) 92\(^o\) (d) 60\(^o\)
229. একটি কোণের বৃত্তীয় মান \(\cfrac{7\pi}{12}\) হলে, ষষ্ঠিক পদ্ধতিতে এর মান কত ?
(a) 90° (b) 105° (c) 135° (d) 160°
230. \(a, 2a^2, 3a^3\)-এর চতুর্থ সমানুপাতী নির্ণয় করো।
(a) \(6a^3\) (b) \(6a^2\) (c) \(6a^4\) (d) \(6a\)
231. বার্ষিক 6\(\frac{1}{4}\)% সুদে 1200 টাকা এবং বার্ষিক ৪\(\frac{1}{3}\)% সুদে 1000 টাকা একই দিনে ধার দেওয়া হয়। কত সময়ে উভয় মূলধনের সবৃদ্ধিমূল সমান হবে?
(a) 20 বছর (b) 24 বছর (c) 15 বছর (d) 30 বছর
232. যদি \(\theta+\phi=\cfrac{7\pi}{12}\) , \(tan\theta = \sqrt3\) হলে, \(tan\phi\) -এর মান কত?
(a) \(\cfrac{1}{2}\) (b) 1 (c) \(\cfrac{1}{\sqrt3}\) (d) \(\cfrac{\sqrt3}{2}\)
233. \(sin12°cos18°sec78°cosec72°\) এর মান কোনটি ?
(a) 1 (b) \(\cfrac{1}{2}\) (c) \(\cfrac{1}{\sqrt2}\) (d) \(\cfrac{\sqrt3}{2}\)
234. A-এর টাকা B-এর টাকার \(\cfrac{3}{4}\) এবং B-এর টাকা C-এর টাকার \(1\cfrac{1}{5}\) গুণ। A ও C -এর টাকার অনুপাত কত?
(a) 19:20 (b) 10:9 (c) 9:10 (d) 20:19
235. XYZ সমবাহু ত্রিভুজটি একটি বৃত্তে অন্তর্লিখিত। বৃত্তের কেন্দ্র O হলে \(\angle\)YOZ -এর মান কত?
(a) 60° (b) 30° (c) 90° (d) 120°
236. ABC ত্রিভুজের AB = AC; C বিন্দু দিয়ে অঙ্কিত রেখা বর্ধিত BA-কে D বিন্দুতে ছেদ করে। যদি AC = AD হয়, \(\angle\)BCD-এর পরিমাপ বৃত্তীয় মানে কত? Madhyamik 2006
(a) \(\cfrac{π}{2}\) (b) \(π\) (c) \(\cfrac{π}{4}\) (d) \(\cfrac{π}{3}\)
237. \(\sqrt{10}-3=k\) হলে \((\sqrt{10}+3)\) এর মান -
(a) \(2k\) (b) \(\cfrac{1}{k}\) (c) \(\cfrac{1}{2k}\) (d) \(-\cfrac{1}{k}\)
238. \(a+\cfrac{1}{a}=\sqrt3\) হলে \(a^3+\cfrac{1}{a^3}\) এর মান হবে
(a) 1 (b) 0 (c) -1 (d) 3
239. \(sin (90° + \theta) = cos (120° – 3\theta)\) সমীকরণ থেকে \(\theta\) এর মান হয়
(a) 30° (b) 60° (c) 45° (d) কোনোটিই নয়
240. \(x-\cfrac{1}{x}=\sqrt5\) হলে \(x^4+\cfrac{1}{x^4}\) -এর মান হবে
(a) 45 (b) 46 (c) 47 (d) 48
241. ABCD একটি বৃত্তস্থ চতুর্ভুজ। \(\angle\)ABD = 48°, \(\angle\)ACD-এর মান কত?
(a) 42° (b) 138° (c) 48° (d) 12°
242. \(sin\theta cos\theta = \cfrac{1}{2}\) হলে, \( (sin\theta + cos\theta)^2\) এর মান কত ?
(a) 1 (b) 3 (c) 2 (d) 4
243. \(sec^212°-\cfrac{1}{tan^278°}\) এর মান হল
(a) 0 (b) 1 (c) -1 (d) 2
244. ABC ত্রিভুজের পরিকেন্দ্র O। যদি \(\angle\)BAC = 85°, \(\angle\)BCA = 70° হয়, তবে \(\angle\)OAC-এর মান কত?
(a) \(65^o\) (b) \(42\cfrac{1}{2}^o\) (c) \(50^o\) (d) \(25^o\)
245. ABCD সামান্তরিকের AB এবং AD-এর মধ্যবিন্দু E এবং Fহলে এবং ABCD সামান্তরিকের ক্ষেত্রফল 1600 বর্গসেমি হলে, \(\triangle\)AEF-এর ক্ষেত্রফল কত?
(a) 400 বর্গসেমি (b) 200 বর্গসেমি (c) 300 বর্গসেমি (d) কোনোটিই নয়
246. ABCD সামান্তরিকের \(\angle\)A ও \(\angle\)B-এর সমদ্বিখণ্ডক পরস্পর O বিন্দুতে ছেদ করে। \(\angle\)AOB-এর মান হল :
(a) 30° (b) 60° (c) 90° (d) 45°
247. \(cos^2\theta – sin^2\theta =\frac{1}{2}\) হলে \(tan\theta\)-এর মান কত?
(a) \(\frac{1}{\sqrt3}\) (b) \(\sqrt3\) (c) 1 (d) কোনোটিই নয়
248. \(\triangle\)ABC-এর অন্তঃকেন্দ্র I. Al-কে বর্ধিত করলে এটি পরিবৃত্তের পরিধিকে P বিন্দুতে ছেদ করে। PB = 15 সেমি হলে, PI-এর দৈর্ঘ্য কত?
(a) 5 সেমি. (b) 15 সেমি. (c) 10 সেমি. (d) 20 সেমি.
249. ABCD একটি বৃত্তস্থ চতুর্ভুজ। CD-কে E পর্যন্ত বর্ধিত করা হল। যদি \(\angle\)ADE = 70° হয়, তাহলে \(\angle\)ABC-এর মান হবে
(a) 140\(^o\) (b) 35\(^o\) (c) 105\(^o\) (d) 70\(^o\)
250. \(x=9+4\sqrt5\) হলে \(\sqrt{x}-\cfrac{1}{\sqrt{x}}\) এর মান হবে -
(a) 4 (b) 3 (c) 2 (d) 1
251. \(r\) ব্যাসার্ধ বিশিষ্ট দুটি সমান বৃত্ত পরস্পরকে এমনভাবে ছেদ করেছে যে, প্রতিটি বৃত্ত অন্যটির কেন্দ্রগামী। বৃত্ত দুটির কেন্দ্র A ও B এবং এরা পরস্পরকে P ও Q বিন্দুতে ছেদ করেছে। \(\triangle\)APB-এর ক্ষেত্রফল হবে :
(a) \(\cfrac{\sqrt3}{4}r^2\) (b) \(\cfrac{\sqrt3}{2}r^2\) (c) \(\cfrac{\sqrt3}{3}r^2\) (d) \(\sqrt3 r^2\)
252. যদি \(sin 3\theta . sec 6\theta = 1\) হয়, তবে \(tan 6\theta\) -এর মান কত?
(a) \(\sqrt{\cfrac{13}{5}}\) (b) \(\sqrt3\) (c) \(\cfrac{1}{\sqrt3}\) (d) 0
253. \(sin51° = \cfrac{a}{\sqrt{a^2+b^2}}\) হলে \(tan51° \) \(+ tan39°\) -এর মান কত?
(a) \(\cfrac{a^2+b^2}{ab}\) (b) \(\cfrac{a^2-b^2}{ab}\) (c) \(\cfrac{a-b}{ab}\) (d) \(\cfrac{a+b}{ab}\)
254. একটি বৃত্তে পরিধির উপর দুটি বিন্দু A ও B বিন্দুতে স্পর্শক দুটি পরস্পর C বিন্দুতে ছেদ করে। যদি পরিধির উপর অপর একটি বিন্দু P এমন যা কেন্দ্রের যে দিকে C অবস্থিত তার বিপরীত দিকে অবস্থিত। যদি \(\angle\)APB = 35° হয়, তবে \(\angle\)ACB-এর মান কত?
(a) 145° (b) 55° (c) 110° (d) কোনোটিই নয়
255. \(a=\cfrac{\sqrt3}{2}\) হলে, \(\sqrt{1+a}+\sqrt{1-a}\) এর মান হবে -
(a) \(a\) (b) \(3a\) (c) \(2a\) (d) \(4a\)
256. \(\cfrac{sec\theta+1}{tan\theta}=x\) হলে \(\cfrac{sec\theta-1}{tan\theta}\)-এর মান হল :
(a) \(\frac{1}{x}\) (b) \(x\) (c) \(2x\) (d) \(3x\)
257. \(x^2-ax-15=0\) সমীকরণের একটি বীজ – 3 হলে \(a\) -এর মান কত?
(a) -2 (b) 2 (c) 3 (d) 0
258. \(\sqrt{12}+\sqrt{50}+5\sqrt{3}-\sqrt{147}-\sqrt{32}\) এর মান
(a) \(\sqrt3\) (b) \(\sqrt2\) (c) \(2\sqrt2\) (d) \(3\sqrt3\)
259. ABC ত্রিভূজের পরিকেন্দ্র O । যদি \(\angle\)BAC=85\(^o\), \(\angle\)BCA=75\(^o\) হয়, তবে \(\angle\)OACএর মান কত ?
(a) 70° (b) 40° (c) 110° (d) 140°
260. O কেন্দ্রীয় বৃত্তের AB একটি জ্যা এবং A বিন্দুতে PT বৃত্তের স্পর্শক। যদি \(\angle\)AOB = 120° হয়, তবে \(\angle\) BAT-এর পরিমাপ কত ?
(a) 60° (b) 30° (c) 90° (d) 45°
261. \(sin\theta cos\theta =\cfrac{1}{2}\) হলে, \((sin\theta+\) \(cos\theta)^2\) এর মান কত ?
262. \(\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}}\) এর মান হল -
(a) 3 (b) 4 (c) 5 (d) 6
263. \(x=\sqrt3+\sqrt2\) হলে, \(x^3+\cfrac{1}{x^3}\) এর মান হল -
(a) \(18\sqrt2\) (b) \(18\sqrt3\) (c) \(18\sqrt5\) (d) \(18\sqrt6\)
264. \(a=\cfrac{1}{5+2\sqrt6}\) হলে, \(a^2-\cfrac{1}{a^2}\) এর মান কত ?
(a) \(4\sqrt6\) (b) -\(4\sqrt6\) (c) \(40\sqrt6\) (d) -\(40\sqrt6\)
265. \(sin\theta \times tan\theta+cos\theta\) এর সরলতম মান হল -
(a) \(cos\theta\) (b) \(tan\theta\) (c) \(cosec\theta\) (d) \(sec\theta\)
266. \(cos^2\theta-sin^2\theta=\cfrac{1}{2}\) হলে, \(tan\theta\) এর মান হবে -
(a) \(-\cfrac{1}{\sqrt3}\) (b) \(\cfrac{1}{3}\) (c) \(\cfrac{1}{\sqrt3}\) (d) \(\cfrac{2}{3}\)
267. \(\sqrt{x}+\sqrt{y}=\sqrt{18+6\sqrt5}\) হলে \(x\) এর মান কত ?
(a) 8 (b) 15 (c) 6 (d) 12
268. \(x=3+\sqrt8\) এবং \(y=3-\sqrt8\) হলে, \(x^{-3}+y^{-3}\) এর মান নির্ণয় কর ।
(a) 199 (b) 195 (c) 198 (d) 201
269. \(x=\cfrac{\sqrt3}{2}\) হলে, \(\cfrac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}\) এর মান কত ?
(a) \(2\sqrt3\) (b) \(\cfrac{1}{\sqrt3}\) (c) \(\sqrt3\) (d) \(\sqrt5\)
270. \(7, x-2,10\) ও \(x+3\) রাশিগুলির যৌগিক গড় \(9\) হলে \(x\) এর মান কত ?
(a) 7 (b) 8 (c) 9 (d) 10
271. যদি \(\sum f_iu_i=10\), শ্রেণিদৈর্ঘ্য=20, \(\sum f_i=40+k\), যৌগিক গড় 54 এবং কাল্পনিক গড় 50 হয় তবে \(k\) এর মান কত হবে ?
(a) 10 (b) 15 (c) 20 (d) 25
272. \(\sum{f_ix_i}=216, \sum{f_i}=16, \) যৌগিক গড় \(13.5+p\) -হলে \(p\) এর মান হবে -
(a) 0 (b) 1 (c) 0.1 (d) 0.01
273. যদি \(u_i=\cfrac{x_i-20}{10}, \sum{f_iu_i}=15\) এবং \(\sum{f_i}=80 \) হয়, তবে \(\bar{x}\) এর মান হবে -
(a) 21.875 (b) 20.875 (c) 21.800 (d) 20.125
274. \(\sum \limits_{i=1}^n (x_i-7)=-8\) এবং \(\sum\limits_{i=1}^n (x_i+3)\)=\(72\) হলে, \(\bar{x}\) ও \(n\) এর মান কত হবে ?
(a) \(\bar{x}=5, n=8\) (b) \(\bar{x}=6, n=8\) (c) \(\bar{x}=4, n=7\) (d) \(\bar{x}=8, n=6\)
275. কাল্পনিক গড় 22, শ্রেণিদৈর্ঘ্য 10, মোট পরিসংখ্যা 80 এবং \(\sum{f_iu_i}\) এর মান 16 হলে যৌগিক গড় হবে -
(a) 23 (b) 24 (c) 25 (d) 26
276. 9,12,15,18,20,22 সংখ্যাগুলির যৌগিক গড়ের মান 2 বৃদ্ধি ঘটে, যদি 15 এর পরিবর্তে নীচের ___ সংখ্যাটি নেওয়া হয় ।
(a) 27 (b) 19 (c) 21 (d) 25
277. \(x_1, x_2,x_3,x_4....,x_n\) সংখ্যাগুলির গড় \(\bar{x}\) হলে, \((x_1-\bar{x})\)+\((x_2-\bar{x})\)+\((x_3-\bar{x})\)+....+\((x_n-\bar{x})\) এর মান হবে
(a) 0 (b) 1 (c) 3 (d) 5
278. \(\sum\limits _{i=1}^5 x_i=5\) এবং \(\sum\limits _{i=1}^5 x_i^2=14\) হলে \(\sum \limits _{i=1}^5 2x_i(x_i-3)\) এর মান হবে -
(a) 2 (b) -2 (c) 0 (d) 4
279. \(a:b:c = 2:3:5\) হলে \(\cfrac{2a + 3b- 3c}{c}\) এর মান নির্ণয় করো।
(a) \(=-\cfrac{2}{5}\) (b) \(=-\cfrac{3}{5}\) (c) \(=\cfrac{2}{5}\) (d) \(=\cfrac{3}{5}\)
280. \(a∝ \cfrac{1}{c}\) এবং \(c∝\cfrac{1}{b}\) হলে \(a\) ও \(b\) এর মধ্যে ভেদ সম্পর্ক নির্ণয় করো। Madhyamik 2011
281. ∆ABC এর BC বাহুর সমান্তরাল সরলরেখা AB ও AC বাহুকে যথাক্রমে P ও Q বিন্দুতে ছেদ করে। PB=AQ, AP= 9 একক এবং QC = 16 একক হলে। PB এর দৈর্ঘ্য কত?
(a) 12 সেমি (b) 6 সেমি (c) 8 সেমি (d) 10 সেমি
282. \(9 tan^2θ+4cot^2θ\) এর ক্ষুদ্রতম মান নির্ণয় করো।
283. যদি \(x^2+7x+m=0\) এর বীজদ্বয় দুটি ক্রমিক অখণ্ড সংখ্যা হয় তবে \(m\) এর মান নির্ণয় কর।
284. যদি \(x^2+y^2-4x-6y+13=0\) হয়, তাহলে \((x+y) : (y-x) \) এর মান কত?
285. ∆ABC এর ∠B = 90°, AC = √13 সেমি এবং AB+BC= 5 সেমি হলে (cos A+cos C) এর মান নির্ণয় করো।
286. ∆ABC এর BC বাহুর সমান্তরাল সরলরেখা AB ও AC-কে যথাক্রমে P ও Q বিন্দুতে ছেদ করে এবং \(\frac{AQ}{QC}=\frac{3}{4}\) যদি AB=21 সেমি তবে PB এর দৈর্ঘ্য কত?
287. \(\sin^2 x+\sin^2 y=1\) হলে \(\sin \cfrac{(x+y)}{2}+\cos \cfrac{(x+y)}{2}\) এর মান কত ?
288. যদি \(cosec^2 θ=2cotθ\) হয়, তবে \(θ\) এর মান নির্ণয় করো। [যেখানে 0°<θ<90°]
289. যদি \(a+b=3\) এবং \(a – b = √5\) হয় তবে \(ab\) এর মান নির্ণয় করো।
290. \(\cfrac{4}{sec^2θ} +\cfrac{1}{1+cot^2θ} +3sin^2θ\) এর মান কত?
291. \(a:b = 3:4\) এবং \(x:y =5:7\) হলে \((3ax-by) : (4by –7ax)\) এর মান নির্ণয় করো।
292. 10 সেমি দৈর্ঘ্যের ব্যাসার্ধের দুটি সমান বৃত্ত পরস্পরকে ছেদ করে এবং তাদের সাধারণ জ্যা এর দৈর্ঘ্য 12 সেমি। বৃত্ত দুটির কেন্দ্রদ্বয়ের মধ্যে দূরত্ব নির্ণয় করো।
293. যদি \(rcosθ = 2√3\) , \(rsinθ =2\) এবং \(0°<θ<90°\) হয়, তবে \(r\) ,ও \(θ\) এর মান নির্ণয় করো। Madhyamik 2024
294. ABCD একটি বৃত্তস্থ চতুর্ভূজ এবং O ওই বৃত্তের কেন্দ্র। যদি ∠COD=120° এবং ∠BAC=30° হয়, তবে ∠BOC ও ∠BCD এর মান নির্ণয় করো।
295. \(see5A = cosec (A+36°)\) এবং \(5A\) ধনাত্মক সূক্ষ্মকোণ হলে, \(A\)-এর মান নির্ণয় করো।
296. \(sin^6α+cos^6α+3sin^2 α.cos^2α \)এর মান নির্ণয় করো।
297. \(x^2-3x+k=10\) সমীকরণের বীজদ্বয়ের গুণফল \(-2\) হলে \(k\)-এর মান কত?
298. \(ax^2+bx+c = 0\) এর বীজদ্বয় α ও β হলে \(\left(1+\cfrac{α}{β}\right)\left(1+\cfrac{β}{α}\right)\) এর মান কত?
299. একটি গোলকের উপরিতলের ক্ষেত্রফল \(A\) ও আয়তন \(V\) হলে, \(\cfrac{A^3}{V^2}\) এর মান নির্ণয় করো।
300. ABCD বৃত্তস্থ চতুর্ভুজের AB ও DC বাহুকে বর্ধিত করায় P বিন্দুতে এবং AD ও BC বাহুকে বর্ধিত করায় Q বিন্দুতে মিলিত হয়। \(\angle\)ADC=85° এবং \(\angle\)BPC=40° হলে, \(\angle\)BAD ও \(\angle\)CQD-এর মান নির্ণয় করো।
301. \(1^c\) এর মান -
(a) \(1^c>60^o\) (b) \(1^c=60^o\) (c) \(1^c<60^o\) (d) কোনোটিই নয়
302. \(\sin 135^o-\cos 135^o\) এর মান হবে-
(a) 0 (b) 1 (c) 2 (d) কোনোটিই নয়
303. \(x, y, z\) ক্রমিক সমানুপাতী হলে - \(x^2y^2z^2\left(\cfrac{1}{x^3}+\cfrac{1}{y^3}+\cfrac{1}{z^3}\right)\) এর মান কত ?
(a) \(x+y+z\) (b) \(x^2+y^2+z^2\) (c) \(x^3+y^3+z^3\) (d) কোনোটিই নয়
304. \((a-2)x^2+3x+5=0\) সমীকরণটি \(a\) এর কোন মানের জন্য দ্বিঘাত সমীকরণ হবে না তা নির্ণয় করি ।
(a) \(a=0\) (b) \(a=2\) (c) \(a=4\) (d) \(a=-2\)
305. \(\cfrac{x}{4-x}=\cfrac{1}{3x} , (x≠0, x≠4)\)- কে \(ax^2\) \(+bx\) \(+c=0 (a≠0)\) দ্বিঘাত সমীকরণের আকারে প্রকাশ করলে \(x\) এর সহগ কত হবে তা নির্ণয় করি ।
306. \((x+2)^3=x(x^2-1)\) -কে \(ax^2+bx\) \(+c=0\) \( (a≠0)\) দ্বিঘাত সমীকরণের আকারে প্রকাশ করি এবং \(x^2,x\) ও \(x^0\) - এর সহগ লিখি ।
307. 1 ও -1 মানদুটি \(x^2+x+1=0\) দ্বিঘাত সমীকরণের বীজ কিনা যাচাই কর ।
308. \(\cfrac{5}{6}\) ও \(\cfrac{4}{3}\) মানদুটি \(x+ \cfrac{1}{x}=\cfrac{13}{6} \) দ্বিঘাত সমীকরণের বীজ কিনা যাচাই কর ।
309. \(\cfrac{1}{tan\theta+\cfrac{1}{tan\theta}}\) এর মান কত?
(a) \(tan\theta\) (b) \(sin 2\theta\) (c) \(cos \theta\) (d) \(sin\theta cos\theta\)
310. \(x=\cfrac{\sqrt3}{2}\)হলে \(\cfrac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}\) এর মান কত ?
311. \(\cfrac{2tan30^o}{1-tan^230^o}\) এর মান কত?
(a) \(\cfrac{1}{\sqrt3}\) (b) \(\cfrac{2}{\sqrt3}\) (c) \(2\sqrt3\) (d) \(\sqrt3\)
312. যদি, \(a= \cfrac{√5+1}{√5-1},b=\cfrac{√5-1}{√5+1}\) হয় তবে \(\cfrac{a^2+ab+b^2}{a^2-ab+b^2} \) এর মান কত?
313. \(x^2-x = k(2x-1)\)সমীকরণের বীজদ্বয়ের সমষ্টি এবং গুণফল সমান হলে \(k\) এর মান কত?
314. একটি যৌথ ব্যবসায় A,12,000 টাকা খাটায়। কিছুদিন পর B ব্যবসায় যোগ দেয় এবং 16,000 টাকা খাটায়। 9 মাস পরে A এবং B উভয়েই সমান লাভ পায়। A-এর টাকা কতদিন ব্যবসায় খেটেছিল?
315. tan70°-cot20° এর সরলতম মান 1
316. একটি পরিসংখ্যা বিভাজনের গড় ৪.1, \(∑f_i.x_i =132+5k\) এবং \(∑f_i=20\) হলে \(k\) এর মান কত? Madhyamik 2018
317. y দুটি চলের সমষ্টির সমান,যার একটি x চলের সঙ্গে সরলভেদ এবং অন্যটি x চলের সঙ্গে ব্যস্তভেদে আছে । x=y হলে y=-1 এবং x=3 হলে y=5;x ও y এর মধ্যে সম্পর্ক নির্ণয় কর।
318. একটি লম্ব বৃত্তাকার শঙ্কুর আয়তন V ঘন একক। ভূমি তলের ক্ষেত্রফল A বর্গএকক এবং উচ্চতা H একক হলে, \(\frac{AH}{V}\) এর মান নির্ণয় করো। Madhyamik 2023
319. \(x=2+\sqrt3\) হলে, \(x+\cfrac{1}{x}\) -এর মান হবে \(2\sqrt3\) Madhyamik 2017
320. সমাধান না করে \('p'\) -এর যে সকল মানের জন্য \(x^2 + (p - 3)x + p = 0\) সমীকরণের বাস্তব ও সমান বীজ আছে তা নির্ণয় করো । Madhyamik 2017
321. 11, 12, 14, x - 2, x + 4, x + 9, 32, 38, 47 রাশিগুলি ঊর্ধ্বক্রমানুসারে সাজানো এবং তাদের মধ্যমা 24 হলে, x -এর মান নির্ণয় করো । Madhyamik 2017
322. যদি \(\cfrac{a}{b+c}=\cfrac{b}{c+a}=\cfrac{c}{a+b}\) হয়, তবে প্রমাণ করো যে, প্রত্যেকটি অনুপাতের মান হয় \(\cfrac{1}{2}\) অথবা \(-1\) । Madhyamik 2017 , 2011
323. \((a - 2)x^2 + 3x + 5 = 0\) সমীকরণটি \(a\) -এর মান ______ এর জন্য দ্বিঘাত সমীকরণ হবে না । Madhyamik 2018
324. \(tan 35° tan 55° = sin θ\) হলে, \(θ\) -এর সর্বনিম্ন ধনাত্মক মান —— হবে । Madhyamik 2018
325. \(2x+\cfrac{1}{x}=2\) হলে, \(\cfrac{x}{2x^2+x+1}\) -এর মান কত ? Madhyamik 2018
326. ABCD ট্রাপিজিয়ামের BC\(\parallel\) AD এবং AD=4 সেমি। AC ও BD কর্ণদ্বয় এমনভাবে O বিন্দুতে ছেদ করে যে, \(\frac{AO}{OC}=\frac{DO}{OB}=\frac{1}{2}\) হয়। BC-এর দৈর্ঘ্য নির্ণয় করাে। Madhyamik 2019 , 2024
327. ঘনকাকৃতি একটি জলপূর্ণ চৌবাচ্চা থেকে সমান মাপের 64 বালতি জল তুলে নিলে চৌবাচ্চাটির \(\cfrac{1}{3}\) অংশ জলপূর্ণ থাকে । চৌবাচ্চাটির বাহুর দৈর্ঘ্য যদি 1.2 মিটার হয়, তবে প্রতিটি বালতিতে কত লিটার জল ধরে (1 ঘনডেসিমিটার = 1 লিটার) Madhyamik 2019 , 2003
328. \(tan4θtan6θ=1\) এবং \(6θ\) ধনাত্মক সূক্ষ্মকোণ হলে, \(θ\) -র মান নির্ণয় করো । Madhyamik 2020
329. দুটি কোণের সমষ্টি 135° এবং তাদের অন্তর \(\cfrac{π}{12}\)হলে, কোণ দুটির ষষ্টিক ও বৃত্তীয় মান লেখো । Madhyamik 2020
330. \(6a^3b \) এবং \(24ab^3\) -এর মধ্যসমানুপাতী নির্ণয় করাে। Madhyamik 2016
331. \(sec^2 \theta+tan^2 \theta=\cfrac{13}{12}\) হলে \(sec^4 \theta-tan^4 \theta\) এর মান কত ? Madhyamik 2015
332. y দুটি চলের সমষ্টির সমান, যার একটি x চলের সঙ্গে সরলভেদে এবং অন্যটি x-এর সঙ্গে ব্যস্ত ভেদে আছে। x= 1 হলে y = -1 এবং x = 3 হলে = 5; x ও y-এর মধ্যে সম্পর্ক নির্ণয় করাে Madhyamik 2015
333. 50-কে এরূপ দুই অংশে বিভক্ত করাে যেন তাদের অন্যোন্যকের সমষ্টি \(\cfrac{1}{12}\) হয় । Madhyamik 2015 , 2008
334. ABCD বৃত্তস্থ চতুর্ভুজের AB বাহুকে X বিন্দু পর্যন্ত বর্ধিত করা হয়। \(\angle XBC = 82°\) এবং\( \angle ADB = 47°\) হলে \(\angle BAC\)-এর মান নির্ণয় করাে । Madhyamik 2015
335. \(\sqrt8\times 3 \times \sqrt2\) এর মান নির্ণয় কর । Madhyamik 2014
336. \(\cos\alpha =\sin\beta\) এবং \(\alpha , \beta\) উভয়ের সূক্ষকোণ হলে, \(\sin (\alpha+\beta)\) -এর মান নির্ণয় কর । Madhyamik 2014
337. \(x=3+\sqrt3\) এবং \(y = 6\) হলে \((x+y)^2\)-এর মান নির্ণয় করো । Madhyamik 2013
338. \(x+\cfrac{9}{x}=6\) হলে \(x^2\)-এর সাংখ্যমান নির্ণয় করাে। Madhyamik 2013
339. ABCD বৃত্তস্থ চতুর্ভুজের AB বাহুটি বৃত্তটির ব্যাস। \(\angle\)ACD = 50° হলে \(\angle\)BAD-এর মান নির্ণয় করাে। Madhyamik 2013
340. \(\sin 3x = 1\) হলে \(\tan 2x\)-এর মান কত? Madhyamik 2013
341. \(x=sin^2 30°+4cot^2 45° -sec^2 60°\) হলে \(x\) এর মান নির্ণয় করো । Madhyamik 2013
342. \(\tan A=\cfrac{x}{y}\), \(\cfrac{\cos A-\sin A}{\cos A+\sin A}\) -এর মান নির্ণয় করো । Madhyamik 2012
343. \(x\sin 60° \cos^2 30°=\cfrac{\tan^2 45° \sec 60°}{cosec 60°}\) হলে, \(x\) এর মান নির্ণয় করো । Madhyamik 2012 , 2009
344. \(\triangle\)ABC এর পরিকেন্দ্র O, দেওয়া আছে যে \(\angle\)BAC=85°, এবং \(\angle\)BCA=55°, \(\angle\)OAC এর মান নির্ণয় করো । Madhyamik 2011
345. \(r \cos \theta=\cfrac{1}{2}\) ও \(r\sin \theta=\cfrac{\sqrt3}{2}\) হলে, \(r\) এর মান নির্ণয় করো যেখানে \(0°\lt \theta \lt 90°\) Madhyamik 2011
346. \((5+\sqrt3)(5-\sqrt3)=25-x^2\); \(x\) এর মান বের করো । Madhyamik 2011
347. \((x^2-y^2), (x^2y-xy^2), (x+y)\) এর চতুর্থ সমানুপাতী নির্ণয় করো । Madhyamik 2010
348. \(\sin 4\theta=\cos 5\theta\) হলে \(\theta\) এর মান নির্ণয় করো । Madhyamik 2010
349. \(2 \cos^2\theta+3\sin \theta=3\) \((0°\lt \theta \lt 90°)\)হলে \(\theta\) এর মান নির্ণয় করা। Madhyamik 2010
350. \(m=\sqrt{\cfrac{n}{n+\cfrac{1}{2}}}\) ও \(m=\cfrac{1}{2}\) হলে \(n\) এর মান কত ? Madhyamik 2009
351. \(\cos \theta+\sec\theta=2\) হলে \(cos^9\theta+\sec^9\theta\) এর মান নির্ণয় করো । Madhyamik 2009
352. \(\cfrac{x}{y}=\cfrac{a+2}{a-2}\) হলে \(\cfrac{x^2-y^2}{x^2+y^2}\) এর মান নির্ণয় করো । Madhyamik 2009
353. \(\triangle\)ABC এর পরিকেন্দ্র O । \(\angle\)BAC= 50° হলে \(\angle\)OBC এর মান নির্ণয় করো । Madhyamik 2008
354. \(x, y\) ধনাত্বক সূক্ষ্মকোণ, \(x+y \lt 90°\) এবং \(\sin(2x-20°)=\cos(2y+20°)\) হলে \(\tan(x+y)\) এর মান নির্ণয় করো । Madhyamik 2008
355. এক ব্যক্তি 28,000 টাকা তাঁর 13 বছরের ছেলে ও 15 বছরের মেয়ের জন্য এরূপ নির্দেশ দিয়ে গেলেন যে, 18 বছর বয়সে তাদের নিজ নিজ বন্টনের উপর বার্ষিক 10% সরল সুদে প্রাপ্য টাকা সুদে-আসলে সমান হবে। তাদের প্রত্যেকের জন্য বন্টিত টাকার পরিমান নির্ণয় করো । Madhyamik 2008
356. \(\tan 2\theta \tan 3\theta=1\) হলে \(\theta\) এর মান নির্ণয় করো, \(0\le \theta \le \cfrac{\pi}{2}\) Madhyamik 2007
357. \(cosec \theta+\cot \theta=\sqrt3\) হলে \(\sin \theta\) এর মান নির্ণয় করো । \((0°\lt \theta \lt 90°)\) Madhyamik 2007
358. যদি \(\sin 23°=p\) হয়, তবে \(\sin 67°\) এর মান \(p\) এর আকারে বের করো । Madhyamik 2006
359. \(\cfrac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=3\) হলে, \(\sin^4 \theta-\cos^4\theta\)-এর মান নির্ণয় করো । Madhyamik 2006
360. XYZ ত্রিভূজের Y সমকোণ । XY=\(2\sqrt6\) এবং XZ-YZ=2 হলে sec X+ tan X এর মান কত হবে ? Madhyamik 2006
361. \(\cfrac{2x}{3}=\cfrac{4y}{5}=\cfrac{7z}{9}\) হলে, \(\cfrac{4x+12y-21z}{3y}\) -এর মান কত ? Madhyamik 2005
362. \(\tan \theta \cos 60°=\cfrac{{\sqrt3}}{2}\) হলে, \(\sin (\theta-15°)\) - এর মান কত ? \((0°\lt \theta \lt 90°)\) Madhyamik 2005
363. ABC ত্রিভূজের AB=AC । E বর্ধিত BC এর ওপর যেকোনো একটি বিন্দু । ABC ত্রিভূজের পরিবৃত্ত AE কে D বিন্দুতে ছেদ করে, প্রমান কর যে \(\angle\)ACD=\(\angle\)AEC Madhyamik 2005
364. A বার্ষিক 6% হার সরল সুদে B এর কাছ থেকে 960 টাকা ধার নিলো এই শর্তে যে ধার নেওয়ার পর থেকে পরবর্তী 4 টি বার্ষিক কিস্তিতে ধার পরিশোধ করবে । প্রথম 3 কিস্তির প্রত্যেকটিতে কেবল আসলের \(\cfrac{1}{4}\) অংশ করে দেবে এবং শেষ কিস্তিতে আবশিষ্ট আসল ও মোট সুদ দেবে । চতুর্থ বছরের শেষে A কত টাকা দেবে ? Madhyamik 2005
365. যদি \(\theta\) ধনাত্মক সূক্ষ্মকোণ এবং \(\sin \theta =\cfrac{\sqrt3}{2}\) হয়, তবে \(\tan(\theta- 15°)\) -এর মান কত ? Madhyamik 2003
366. \(\cos^4\theta-\sin^4\theta=\cfrac{2}{3}\) হলে \(1-2\sin^2\theta\) এর মান কত ? Madhyamik 2003
367. \(\cfrac{3-5x}{x}+\cfrac{3-5y}{y}+\cfrac{3-5z}{z}=0\) হলে \(\cfrac{1}{x}+\cfrac{1}{y}+\cfrac{1}{z}\) এর মান কত ? Madhyamik 2003
368. একটি যন্ত্রের বর্তমান মূল্য \(b\) টাকা এবং তার মূল্য প্রতিবছর \(r\%\) হ্রাস পায়। তাহলে \(n\) বছর পরে যন্ত্রটির মূল্য হবে \(r\left(1-\cfrac{r}{100}\right)^n\) টাকা।
369. একটি আয়তঘনের তল সংখ্যা \(x\) ধার সংখ্যা \(y\) শীর্ষবিন্দুর সংখ্যা \(z\) এবং কর্ণের সংখ্যা \(p\) হলে \((x-y+z+p)\) -এর মান নির্ণয় করাে।
370. বার্ষিক 5% সরল সুদের হারে \(x\) টাকার মাসিক সুদ 1 টাকা হলে \(x\)-এর মান –
(a) 200 টাকা (b) 220 টাকা (c) 240 টাকা (d) 260 টাকা
371. \(5+\sqrt{x}=\sqrt2-y\) হলে \((x+y)\) এর মান হবে _________ ।
372. \((\sqrt7+1)\) ও \((\sqrt5+\sqrt3)\) এর মধ্যে কোনটি বড় নির্ণয় কর।
373. O কেন্দ্রীয় বৃত্তের ওপরে P, Q এবং R বিন্দু তিনটি এমন ভাবে অবস্থিত যে PORQ একটি সামান্তরিক হয়। \(\angle\)POR এর মান নির্ণয় করাে।
374. \(k\)-এর কোনাে মান বা মানগুলির জন্য নিম্নলিখিত সমীকরণের বাস্তব ও সমান বীজ থাকবে : \((3k+1)x^2 +2(k+1)x+k=0\)
375. O কেন্দ্রীয় বৃত্তে ABCD একটি বৃত্তস্থ চতুর্ভূজ। \(\angle\)ABD=50°, \(\angle\)CAD=28° এবং \(\angle\)ADB=32° হলে \(\angle\)BCD-এর মান হবে
(a) 72° (b) 52° (c) 62° (d) 82°
376. \(\triangle\)ABC এর অন্তবৃত্ত AB, BC ও CA বাহুকে যথাক্রমে D, E ও F বিন্দুতে স্পর্শ করে। AD=12 সেমি, BE=5 সেমি এবং CF=৪ সেমি হলে, AB, BC ও CA-এর পরিমাণ কত?
377. আয়তঘনকাকৃতি একটি কাঠের বাক্সের মাত্রাগুলির সমষ্টি 10 সেমি। এর মধ্যে সবচেয়ে বড় মাপের যে দণ্ড রাখা যায় তার দৈর্ঘ্য \(\sqrt{38}\) সেমি। বাক্সটির সমগ্রতলের ক্ষেত্রফল কত?
378. A ও B 12500 টাকা এবং 8500 টাকা নিয়ে একটি ব্যবসা শুরু করল। তারা চুক্তি করল যে লাভের 40% তাদের মধ্যে সমান ভাবে ভাগ হবে এবং বাকি 60% মূলধনের অনুপাতে ভাগ হবে। A-এর লাভ 1950 টাকা হলে B-এর লাভ কত?
379. AB একটি ব্যাস। P বৃত্তের ওপর যে কোনাে একটি বিন্দু হলে \(\angle\)APB এর মান –
(a) 90° (b) 180° (c) 45° (d) কোনোটিই নয়
380. 13 সেমি দৈর্ঘ্যের ব্যাসার্ধের দুটি সমান বৃত্ত পরস্পরকে ছেদ করে এবং তাদের সাধারণ জ্যা এর দৈর্ঘ্য 10 সেমি। বৃত্ত দুটির কেন্দ্রদ্বয়ের মধ্যে দূরত্ব কত?
381. এক অংশীদারি কারবারে A লাভের \(\cfrac{2}{3}\) অংশ পান, B ও C অবশিষ্ট লভ্যাংশ সমান ভাগে ভাগ করেন । লাভের হার 5% থেকে 7% বৃদ্ধি হলে A এর আয় 8000 টাকা বৃদ্ধি পায় । C এর মূলধন কত ?
382. \(x=\cfrac{\sqrt3}{2}\) হলে \(\cfrac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}} \) এর মান কত ?
383. \(k\) এর কোন মানের জন্য \(x+5y=8\) এবং \(2x-ky=13\) সমীকরনদ্বয়ের কোনো সমাধান সম্ভব নয় ?
(a) 1 (b) 5 (c) 10 (d) -10
384. \(k\) এর কোন মানের জন্য \(x-ky=k\) এবং \(x+(k-2)y=2\) সমীকরনদ্বয়ের কোনো সমাধান থাকবে না তা নির্ণয় কর ।
(a) -1 (b) 1 (c) 2 (d) কোনোটিই নয়
385. \(3x+y=\cfrac{1}{k-4},\) \(2x+3y=5\) সমীকরনদুটি \(k\) এর কোন মানের জন্য সমাধানযোগ্য নয় ?
(a) 3 (b) 2 (c) 4 (d) কোনোটিই নয়
386. \(\sin\theta\cos\theta=\cfrac{1}{2}\) হলে \((\sin\theta-\cos\theta)^2\) এর মান কত ?
(a) 0 (b) 1 (c) 2 (d) কোনোটিই নয়
387. ABCD একটি বৃত্তস্থ চতুর্ভূজ এবং বৃত্তের কেন্দ্র O \(\angle\)COD=130\(^o\), \(\angle\)BAC=25\(^o\) হলে \(\angle\)BOC এবং \(\angle\)BCD এর মান কত ?
(a) 40\(^o\),90\(^o\) (b) 50\(^o\),90\(^o\) (c) 65\(^o\),50\(^o\) (d) কোনোটিই নয়
388. \(x+\cfrac{1}{x}=-2\) হলে \(x^7+\cfrac{1}{x^7}\)-এর মান কত হবে ?
(a) -1 (b) -2 (c) 2 (d) কোনোটিই নয়
389. \(x-\cfrac{1}{x}=\sqrt5\) হলে \(x^4+\cfrac{1}{x^4}\) এর মান হয় -
390. \(\tan \theta=\cfrac{8}{15}\) হলে \(\sqrt{\cfrac{1-\sin\theta}{1+\sin\theta}} \) এর মান হয় -
(a) \(\cfrac{2}{5}\) (b) \(\cfrac{3}{5}\) (c) \(\cfrac{1}{5}\) (d) কোনোটিই নয়
391. \(a^2-4a+1=0\) হলে, \(a^4+\cfrac{1}{a^4}\)-এর মান কত?
(a) 196 (b) 194 (c) 190 (d) 192
392. \(x+\cfrac{1}{x} = -2\) হলে, \(x^7+\cfrac{1}{x^7}\) -এর মান হবে
(a) -2 (b) 6 (c) -5 (d) 0
393. \(x-\cfrac{1}{x} = \sqrt{5}\) হলে, \(x^4+\cfrac{1}{x^4}\) -এর মান কত?
(a) 36 (b) 65 (c) 47 (d) 70
394. \(2x+4y- 25 = 0\) এবং \(3x + ky-12 = 0\) সমীকরণদুটির একটি মাত্র সমাধান থাকলে, \(k\)-এর মান কত?
(a) 1 (b) 5 (c) 6 (d) 8
395. \(2x+4y- 25 = 0\) এবং \(3x + ky-12 = 0\) সমীকরণদুটির একটি মাত্র সমাধান থাকলে, \(k\)-এর মান কত?
(a) 6 (b) 8 (c) 3 (d) 0
396. \(r\) -এর কোন মানের জন্য \(2x+ry+1=0\) এবং \((1-r)x-3y-1=0\) সমীকরণ দুটি, দুটি সমান্তরাল সরলরেখা সূচিত করে?
(a) 2, 3 (b) -2, 3 (c) -2, -3 (d) 2, -3
397. \(k\) -এর কোন মানের জন্য, \(2x+ky+1 = 0\) এবং \(3x+2y = 2\) সমীকরণ দুটির সমাধান সম্ভব নয়?
(a) \(\cfrac{1}{2}\) (b) \(-\cfrac{1}{2}\) (c) \(\cfrac{4}{3}\) (d) \(-\cfrac{4}{3}\)
398. \(\cfrac{sinθ+cosθ}{sinθ-cosθ} = 5\) হলে \(tanθ\) এর মান নির্ণয় করো।
399. \(\cfrac{a}{2} = \cfrac{b}{3} = \cfrac{c}{4} = \cfrac{2a-3b+4c}{p}\) হলে, \(p\) এর মান নির্ণয় করো।
400. \((0.243)^{0.2}\times(10)^{0.6}\)এর মান
(a) 0.3 (b) 3 (c) 0.9 (d) 9
401. \(2^\frac{1}{2}\times 2^{-\frac{1}{2}}\times\left(16\right)^\frac{1}{2}\) এর মান
(a) 1 (b) 2 (c) 4 (d) \(\frac{1}{2}\)
402. \(20^{-x}=\dfrac{1}{7}\) হলে \((20)^{2x}\)এর মান
(a) \(\frac{1}{49}\) (b) 7 (c) 49 (d) 1
403. যদি \(\dfrac{a}{b}+\dfrac{b}{a} = 1\) হয় তাহলে \(a^3 + b^3\) -এর মান
(a) \(1\) (b) \(a\) (c) \(b\) (d) \(0\)
404. \(x^2-px + 12 = (x-3)(x – a)\) একটি অভেদ হলে \(a\) ও \(p\) এর মান যথাক্রমে
(a) \(a = 4, p = 7\) (b) \(a = 7, p = 4\) (c) \(a = 4, p =-7\) (d) \(a =-4, p = 7\)
405. PQR ত্রিভুজে \(\angle\)PQR = 90° এবং PR = 10 সেমি.। PR বাহুর মধ্যবিন্দু S হলে QS-এর দৈর্ঘ্য
(a) 4 সেমি (b) 5 সেমি (c) 6 সেমি (d) 3 সেমি
406. ABCD সামান্তরিকের ভিতর O যে কোন একটি বিন্দু। \(\triangle\)AOB + \(\triangle\)COD = 16 বর্গ সেমি. হলে ABCD সামান্তরিক আকার ক্ষেত্রের ক্ষেত্রফল
(a) 8 বর্গ সেমি. (b) 4 বর্গ সেমি. (c) 32 বর্গ সেমি. (d) 64 বর্গ সেমি.
407. \(\log_{10} (7x-5)=2\) হলে, \(x\)-এর মান
(a) 10 (b) 12 (c) 15 (d) 18
408. \(\log_x{\cfrac{1}{3}}=-\cfrac{1}{3}\) হলে, \(x\) এর মান হবে,
(a) \(27\) (b) \(9\) (c) \(3\) (d) \(\cfrac{1}{27}\)
409. \(x, y\) এর বর্গের সাথে সরলভেদে এবং \(z\) -এর ঘনমুলের সাথে ব্যস্ত ভেদে থাকে। \(y = 8, z = 8, x = 16\) হয়। \(x = 24, z = 27\) হলে, \(y =\) কত হবে?
(a) \(\pm{16}\) (b) \(\pm{14}\) (c) \(\pm{12}\) (d) \(\pm{10}\)
410. যদি \(x(2+\sqrt{3})=y(2-\sqrt{3})=1\) হয়, তাহলে, \(\cfrac{1}{x+1}+\cfrac{1}{y+1}\) -এর মান হবে—
(a) \(1\) (b) \(\sqrt{3}\) (c) \(2\sqrt{3}\) (d) \(2\)
411. \(x=\cfrac{\sqrt{7}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}\) এবং \(xy=1\) হলে, \(\cfrac{x^2+y^2+xy}{x^2+y^2-xy}\) -এর মান কত?
(a) \(\cfrac{6}{7}\) (b) \(\cfrac{12}{11}\) (c) \(\cfrac{13}{11}\) (d) কোনােটিই নয়
412. \(x=7+4\sqrt{3}\) হলে, \(\cfrac{x^3}{x^6+3x^3+1}\) -এর মান কত?
(a) \(2705\) (b) \(7430\) (c) \(\cfrac{1}{2705}\) (d) \(\cfrac{1}{7430}\)
413. AOB বৃত্তের একটি ব্যাস। C বৃত্তের উপর একটি বিন্দু। \(\angle\)OBC=55° হলে \(\angle\)OCA-এর মান নির্ণয় করো।
414. ধূমপান বিরোধী প্রচারের ফলে প্রতি বছর ধূমপায়ীর সংখ্যা \( 6 \cfrac{1}{4}\)% হারে হ্রাস পায় । বর্তমানে কোনো শহরে \(33750\) জন ধূমপায়ী থাকলে, \(3\) বছর পুর্বে ওই শহরে কত জন ধূমপায়ী ছিল, তা হিসাব করে লিখি ।
415. \(cos54°\) ও \(sin36°\) এর মান সমান।
416. একটি লম্ব বৃত্তাকার চোঙের বক্রতলের ক্ষেত্রফল \(c\) বর্গএকক,ভূমির ব্যাসার্ধের দৈর্ঘ্য \(r\) একক এবং আয়তন \(v\) ঘনএকক হলে \(\cfrac{cr}{v}\) এর মান নির্ণয় করো।
417. Oকেন্দ্রীয় বৃত্তের AB ব্যাস। C বৃত্তের উপর যে কোনো একটি বিন্দু। \(\angle\)BAC=50° এবং CD,AB এর উপর লম্ব হলে \(\angle\)BCD এর মান নির্ণয় করো।
418. \(\cfrac{3x-5y}{3x+5y}=\cfrac{1}{2}\) হলে \(\cfrac{3x^2-5y^2}{3x^2+5y^2}\) এর মান কত?
419. \(tanθ= \cfrac{x}{y}\) হলে \(\cfrac{x sinθ – y cosθ}{x sinθ+ y cosθ}\) এর মান নির্ণয় করো।
420. A, B, ও C যথাক্রমে 65,000 টাকা, 52,000 টাকা ও 91,000 টাকা মূলধন নিয়ে একটি ব্যবসা শুরু করল এবং ঠিক এক বছর পরে 14,400 টাকা লাভ হল। ঐ লাভের \(\cfrac{2}{3}\) অংশ তারা সমানভাবে এবং বাকি অংশ মূলধনের অনুপাতে ভাগ করে নিলে কে কত টাকা লভ্যাংশ পাবে?
421. \(x^2-x=k(2x-1)\) দ্বিঘাত সমীকরণের বীজদ্বয়ের সমষ্টি শূন্য হলে \(k\)-এর মান কত?
422. \(0°< θ< 90°\) হলে, \((4cosec^2 θ+9 sin^2θ)\) এর সর্বনিম্ন মান নির্ণয় করো।
423. \(cos43° =\cfrac{x}{\sqrt{x^2+y^2}}\) হলে, \(tan47°\)-এর মান নির্ণয় করো।
424. \(x\cot\cfrac{π}{6}=2\cos\cfrac{π}{3}+\cfrac{3}{4} \sec^2 \cfrac{π}{4}+4\sin \cfrac{π}{6}\) হলে \(x\)-এর মান নির্ণয় করো।
425. যদি \(0°< θ <90°\) হয়, তাহলে \((9 tan^2θ+4 cot^2θ)\)-এর সর্বনিম্ন মান নির্ণয় করো।
426. \((cos0°\times cos1°\times cos2°\times cos3° \) \(\times ...\times cos90°)\)-এর মান \(1\)
427. \(x+\cfrac{1}{x}=2\), হলে, \(x^{119}+\cfrac{1}{x^{119}}\)-এর মান হবে?
(a) 1 (b) -1 (c) 2 (d) -2
428. \(a^2+a+1=0\) হলে, \(a^3\)-এর মান হবে :
(a) 1 (b) -1 (c) 2 (d) 3
429. \(tan(\theta+15^o)=1\) হলে, \(cos2\theta\)-এর মান হবে :
(a) \(\cfrac{1}{2}\) (b) \(\cfrac{1}{\sqrt{2}}\) (c) \(\cfrac{\sqrt{3}}{2}\) (d) \(1\)
430. \(cos\theta=\cfrac{p}{\sqrt{p^2+q^2}}\)- হলে, \(tan\theta\)-এর মান নির্ণয় করাে।
(a) \(\cfrac{q}{p}\) (b) \(\cfrac{p}{q}\) (c) \(\cfrac{\sqrt{p}}{q}\) (d) কোনােটাই নয়
431. \(\cfrac{x}{3}+\cfrac{3}{x}=3\cfrac{1}{3}\) হলে \(x\)-এর মান কত?
(a) \(-1, -9\) (b) \(\cfrac{1}{9}, \cfrac{1}{2}\) (c) \(2, 3\) (d) \(1, 9\)
432. ABCD একটি বৃত্তস্থ ট্রাপিজিয়াম যার AD ও BC বাহু পরস্পর সমান্তরাল। যদি \(\angle\)ABC = 75° হয় তবে \(\angle\)BCD-এর পরিমাপ কত?
(a) 105° (b) 90° (c) 150° (d) 75°
433. যদি \(\theta\) একটি ধনাত্মক সূক্ষ্মকোণ এবং \(sin\theta = cos(2\theta + 15°)\) হয়, তাহলে \(\theta\) -এর মান :
(a) 30° (b) 25° (c) 60° (d) 90°
434. \(2(a^2+b^2) x+2(a+b) x+1=0\) দ্বিঘাত সমীকরণের বীজদ্বয় সমান হলে, প্রমাণ করাে যে, \(a = b\)।
435. যদি \(x^2+px+12=0\)-র একটি বীজ \(2\) হয়, এবং \(x^2+px+q=0\)-র বীজ দুটি সমান হয় তবে \(q\)-র মান নির্ণয় করাে।
436. \(p : q = 5 : 7\) এবং \(p - q = -4\) হলে, \(3p - 4q\) এর মান নির্ণয় কর।
437. ABC ত্রিভুজের পরিকেন্দ্র O এবং D বিন্দু BC বাহুর মধ্যবিন্দু। \(\angle\)BAC = 40° হলে, \(\angle\)BOD-এর মান নির্ণয় কর ।
438. \(x^2–5x+k = 12\) সমীকরণের বীজদ্বয়ের গুণফল \(–3\) হলে, \(k\) এর মান
439. যদি \(a+b= \sqrt{5}\) এবং \(ab= \sqrt{3}\) হয়, তাহলে \((a^2+b^2)\) এর মান __।
440. \(x=2+\sqrt3\) এবং \(y = 2-\sqrt3\) হলে \(3x^2+5xy+3y^2\) এর মান নির্ণয় করাে।
441. O কেন্দ্রীয় বৃত্তে ABC ত্রিভুজটি অন্তর্লিখিত। যদি \(\angle\)BAC=85° এবং \(\angle\)BCA=75° হয়, তাহলে \(\angle\)AOC-এর মান নির্ণয় করাে।
442. \(ax^2+bx+35=0\) সমীকরণের বীজদ্বয় -5 ও -7 হলে, \(a\) এবং \(b\) এর মান লিখি।
443. একটি বৃত্তের পরিধির উপর A ও B বিন্দুতে অঙ্কিত স্পর্শকদ্বয় পরস্পর P বিন্দুতে ছেদ করে। যদি \(\angle\)APB=68° হয় তবে \(\angle\)PAB-এর মান কত?
444. \(x^2+ax+12=0\) দ্বিঘাত সমীকরণের একটি বীজ 1 হলে, \(a\) -এর মান হবে
445. ত্রিভুজ ABC-এর পরিকেন্দ্র O এবং \(\angle\)OAB=50° হলে \(\angle\)ACB এর মান হল ।
446. ABCD বৃত্তস্থ চতুর্ভুজের AB বাহুকে X বিন্দু পর্যন্ত বর্ধিত করা হল। \(\angle\)XBC=98° এবং \(\angle\)ADB=45° হলে \(\angle\)BACএর মান কত?
447. x\(\propto\)y এবং y=8 যখন x=2; y=16 হলে x-এর মান-
(a) 2 (b) 4 (c) 6 (d) 8
448. \(k\) এর মান কত হলে \(9x^2+3kx+4=0\) দ্বিঘাত সমীকরণের বীজদ্বয় বাস্তব ও সমান হবে লিখি ।
449. দুটি আয়তঘনের মাত্রাগুলির দৈর্ঘ্য যথাক্রমে 4,6,4 একক এবং 8,(2h-1),2 একক। যদি আয়তঘন দুটির ঘনফল সমান হয়, তাহলে h-এর মান কত?
450. একটি বৃত্তের AB ও AC জ্যা দুটি সমান। প্রমাণ করাে \(\angle\)BAC এর সমদ্বিখন্ডক বৃত্তের কেন্দ্রগামী।
451. যদি \(x=2, y=3\) এবং \(z=6\) হয়, তবে, \(\cfrac{3√x}{√y+√z}-\cfrac{4√y}{√z+√x}+\cfrac{√z}{√x+√y}\) -এর মান হিসাব করে লিখি ।
452. যদি \(m+n = \sqrt{13}\) এবং \(m-n = \sqrt5\) হয় তাহলে \(mn\) এর মান –
453. O কেন্দ্রীয় বৃত্তের AB ও CD জ্যা দু’টির দৈর্ঘ্য সমান। \(\angle\)AOB=60° হলে, \(\angle\)COD এর মান
454. x, y-এর সঙ্গে সরলভেদে এবং z-এর সঙ্গে ব্যস্ত ভেদে আছে। y=4. z=5 হলে x=3 হয়। y=16, z=30 হলে, x-এর মান নির্ণয় কর?
455. ABC ত্রিভুজের O পরিকেন্দ্র। \(\angle\)OAB=50° হলে \(\angle\)ACB এর মান 40°
456. \(tan\theta=\cfrac{8}{15}\) হলে, \(\sqrt{\cfrac{1-sin\theta}{1+sin\theta}}\) -এর মান কত?
(a) \(\cfrac{2}{5}\) (b) \(\cfrac{3}{5}\) (c) \(\cfrac{1}{5}\) (d) কোনােটাই নয়
457. 4% হারে 1250 টাকার 3 বছরের সুদ এবং 5% হারে, 375 টাকার \(x\) বছরের সুদ পরস্পর সমান হলে, \(x\)-এর মান-
(a) 5 (b) 8 (c) 7 (d) 6
458. একটি মােবাইল সেটের মূল্য প্রতিবছর 5% হারে হ্রাস পায়। মােবাইল সেটটির বর্তমান মূল্য 16,400 টাকা হলে, 2 বছর পরে এর মূল্য হবে-
(a) 15,801 টাকা (b) 14,801 টাকা (c) 13,401 টাকা (d) 12,801 টাকা
459. একটি যৌথ ব্যাবসায় প্রতি মাসে ক, খ-এর তুলনায় 600 টাকা বেশি বিনিয়ােগ করে। খ 7\(\cfrac{1}{2}\) মাসের জন্য বিনিয়ােগ করেছে এবং ক, খ অপেক্ষা 2 মাস বেশি বিনিয়ােগ করেছে। এখন 620 টাকা লাভ হলে এবং খ, ক অপেক্ষা 140 টাকা কম পেলে, খ-এর মূলধনের পরিমাণ কত হবে?
(a) 2400 টাকা (b) 2700 টাকা (c) 3000 টাকা (d) 3500 টাকা
460. \(x^2-\cfrac{5}{6}x+\cfrac{1}{6} = 0\) হলে, \(x\)-এর মান-
(a) \(\cfrac{1}{2}, \cfrac{1}{3}\) (b) 2, 3 (c) 3, 4 (d) 3, 4
461. \(x^2 - ax - 15 = 0\) সমীকরণের একটি বীজ \(-3\) হলে, \(a\)-এর মান হল-
462. \(k\)-এর মান কত হলে \(x+\cfrac{k}{x}=2\) সমীকরণের একটি বীজ \(1\) হবে?
463. \(3x^2 + \sqrt2x + a = 0\) সমীকরণের একটি বীজ \(\sqrt2\) হলে, \(a\)-এর মান নির্ণয় করাে।
(a) 7 (b) -8 (c) 9 (d) 8
464. \(x = \sqrt5 + 2\) হলে, \(x^3-\cfrac{1}{x^3}\)-এর মান কত?
(a) 67 (b) 76 (c) 66 (d) 72
465. যদি \(x=\cfrac{\sqrt{a+2b}+\sqrt{a-2b}}{\sqrt{a+2b}+\sqrt{a-2b}}\) হয়, তবে \(bx^2-ax+b\) -এর মান নির্ণয় করাে।
(a) 1 (b) \(0\) (c) 3 (d) 4
466. O, \(\triangle\)ABC-এর পরিকেন্দ্র । যদি \(\angle\)BAC = 50° হয়, তবে \(\angle\)OBC-এর মান হবে—
(a) 30° (b) 60° (c) 40° (d) 50°
467. যদি \(cotθ = \cfrac{15}{8}\) হয়, তাহলে \(\cfrac{(2+2sinθ)(1-sinθ)}{(1+cosθ)(2-2cosθ)}\)-এর মান কত ?
(a) \(0\) (b) \(225\) (c) \(64\) (d) \(\cfrac{225}{64}\)
468. যদি \(tanθ = \cfrac{1}{\sqrt7}\) হয়, তাহলে \(\cfrac{cosec^2θ - sec^2θ}{cosec^2θ + sec^2θ}\)-এর মান কত ?
(a) \(\cfrac{3}{4}\) (b) \(\cfrac{1}{4}\) (c) \(\cfrac{2}{3}\) (d) \(\cfrac{1}{7}\)
469. \(\cfrac{sin10°}{cos80°}\)-এর মান -
(a) \(1\) (b) \(10\) (c) \(\cfrac{1}{2}\) (d) \(2\)
470. \(\cfrac{cos31°}{2sin59°}\) -এর মান নীচের কোনটি ?
(a) \(0\) (b) \(1\) (c) \(\cfrac{1}{2}\) (d) \(2\)
471. \(sin^218°+ sin^272°\)-এর মান = ?
472. \(cos^217°+ cos^273°\)-এর মান = ?
(a) \(1\) (b) \(\cfrac{1}{2}\) (c) \(0\) (d) \(2\)
473. যদি \(tan 4θ \times tan 6θ = 1\) এবং \(6θ\) একটি ধনাত্মক সূক্ষ্মকোণ হয়, তবে \(θ\)-এর মান -
(a) \(5°\) (b) \(10°\) (c) \(9°\) (d) \(4°\)
474. \(x\propto \cfrac{1}{y}\) হলে \(x+y\)এর মান ক্ষুদ্রতম হবে যখন _____
475. যদি \(x= \cfrac{2\sqrt{15}}{\sqrt5+\sqrt3}\) হলে \(\cfrac{x+\sqrt5}{x-\sqrt5}\) \(+\cfrac{x+\sqrt3}{x-\sqrt3}\) -এর মান কত?
476. ABC ত্রিভূজের পরিকেন্দ্র O এবং \(\angle\)OAB=50° হলে, \(\angle\)ACB এর মান হবে _____।
477. O কেন্দ্র বিশিষ্ট বৃত্তের উপর A বিন্দুতে AT একটি স্পর্শক। BC ব্যাসের বর্ধিতাংশ স্পর্শককে T বিন্দুতে ছেদ করে। \(\angle\)ABC=25° হলে \(\angle\)ATB এর মান কত?
478. একটি যৌথ ব্যবসায় B এর মূলধন A এর মূলধনের 1\(\frac{1}{2}\) গুণ ছিল। ৪ মাস পর B তার মূলধনের অর্ধাংশ এবং আরাে 2 মাস পর A তার মূলধনের এক-চতুর্থাংশ তুলে নিল। বছরের শেষে 6,360 টাকা লাভ হলে প্রত্যেকের লভ্যাংশের পরিমাণ কত?
479. যদি \(5x^2+13x+k=0\) দ্বিঘাত সমীকরণের বীজদ্বয় একটি অপরটির অনােন্যক হয়, তবে \(k\)-এর মান-
(a) 3 (b) 4 (c) 5 (d) -5
480. \(\triangle\)ABC-এর বাহুগুলির লম্বসমদ্বিখণ্ডকত্রয় পরস্পর O বিন্দুতে ছেদ করেছে। \(\angle\)OAB=50° হলে, \(\angle\)ACB -এর মান
(a) 50° (b) 100° (c) 40° (d) 180°
481. দুটি সমান জ্যা-এর দৈর্ঘ্য _____ সেমি. এবং তাদের মধ্যে দূরত্ব ৪ সেমি হলে, বৃত্তটির ব্যাস হবে 10 সেমি।
482. একটি যৌথ ব্যবসায় A,B,C-এর। মূলধনের অনুপাত \(\frac{1}{2} : \frac{1}{3} : \frac{1}{4}\), 4 মাস পরে A তার মূলধন অর্ধেক তুলে নেয়। আরও ৪ মাস পরে 6072 টাকা লাভ হলে A-এর লাভের পরিমাণ কত?
483. \(x^2+bx+12=0\) এবং \(x^2-bx+q=0\) সমীকরণদ্বয়ের একটি বীজ \(2\) হলে \(q\)-এর মান কত?
484. \(a\propto b\) এর যখন \(a=2\) তখন \(b=14\) হয়। তবে \(a=5\) হলে \(b=?\)
485. \(2x^2-3x+4=0\) দ্বিঘাত সমীকরনের বীজদ্বয় \(\alpha\) ও \(\beta\) হলে \(\cfrac{\alpha^2+\beta^2}{\alpha^{-1}+\beta^{-1}}\) এর মান কত ?
486. যদি \(a=\cfrac{1}{2+\sqrt3}\) এবং \(b=\cfrac{1}{2-\sqrt3}\) হয়, তবে \(\cfrac{1}{a+1}+\cfrac{1}{b+1}\) এর মান কত ?
487. যদি \(x=\cfrac{\sqrt3-\sqrt2}{\sqrt3+\sqrt2}\) এবং \(xy=1\) হয়, তবে \(3x^2-5xy+3y^2\) এর মান কত?
488. \(x=3+2\sqrt2\) হলে \(x+\cfrac{1}{x}+ 2\) এর মান কত ?
489. \(5x^2+2x+3=0\) দ্বিঘাত সমীকরণের বীজদ্বয় \(\alpha\) ও \(\beta\) হলে \(\cfrac{\alpha^2}{\beta}+\cfrac{\beta^2}{\alpha}\) এর মান নির্ণয় করাে।
490. \(a=\cfrac{\sqrt5+1}{\sqrt5-1}\) এবং \(ab=1\) হলে, \(\cfrac{3a^2+5ab+3b^2}{3a^2-5ab+3b^2}\)-এর মান কত ?
491. O কেন্দ্রীয় বৃত্তের AB ও CD জ্যা দুটির দৈর্ঘ্য সমান । \(\angle\)AOB=60° হলে \(\angle\)COD এর মান
(a) 40° (b) 30° (c) 60° (d) 90°
492. একটি আয়তঘনের তল সংখ্যা \(x\) ধার সংখ্যা \(y\) শীর্ষবিন্দুর সংখ্যা \(z\) এবং কর্ণের সংখ্যা \(p\) হলে \(x+y+z+p\) -এর মান কত তা লিখি।
493. একটি নিরেট গােলকের বক্রতলের ক্ষেত্রফল \(s\) এবং আয়তন \(v\) হলে \(\cfrac{s^3}{v^2}\) এর মান নির্ণয় করাে ।
494. দীপু, রাবেয়া ও মেঘা যথাক্রমে 6500 টাকা, 5200 টাকা ও 9100 টাকা মূলধন নিয়ে একটি ব্যবসা শুরু করল এবং ঠিক এক বছর পরে 14,400 টাকা লাভ হল। ঐ লাভের \(\cfrac{2}{3}\) অংশ তারা সমানভাবে এবং বাকি অংশ মূলধনের অনুপাতে ভাগ করে নিলে কে কত টাকা লভ্যাংশ পাবে তা নির্ণয় করাে।
495. একটি যন্ত্রের বর্তমান মূল্য \(2p\) টাকা এবং তার মূল্য প্রতিবছর \(2r\%\) হ্রাস পায়। তাহলে \(2n\) বছর পরে যন্ত্রটির মূল্য হবে \(2p\left(1-\cfrac{2r}{100}\right)^{2n}\) টাকা।
496. একটি লম্ব বৃত্তাকার চোঙের বক্রতলের ক্ষেত্রফল \(C\) বর্গএকক,ভূমির ব্যাসার্ধের দৈর্ঘ্য \(r\) একক এবং আয়তন \(V\) ঘনএকক হলে \(\cfrac{Cr}{V}\) এর মান নির্ণয় করো।
497. একটি ব্যবসায় A ও B এর মূলধনের অনুপাত \(1:\frac{4}{5}\) । A-এর লভ্যাংশ 80 টাকা হলে, B এর লভ্যাংশ হবে 100 টাকা ।
498. 2, 4, 6 ও 10 এর প্রত্যেকের সঙ্গে কোন সংখ্যা যােগ করলে যােগফলগুলি সমানুপাতী হবে, তা নির্ণয় করাে।
499. \(x^2-3x+k=10\) সমীকরণের বীজদ্বয়ের গুণফল \(-2\) হলে \(k\)-এর মান
(a) -2 (b) -8 (c) 8 (d) 12
500. \(x^2+bx+12=0\) এবং \(x^2+bx+q=0\) সমীকরণদ্বয়ের একটি বীজ \(2\) হলে \(q\)-এর মান কত?
501. \(x+y: x+y= 5:1\) হলে \(x:y\) এর মান হল
(a) 5:1 (b) 1:5 (c) 3:2 (d) 2:3
502. ABCD একটি বৃত্তস্থ ট্রাপিজিয়ম যার AD ও BC বাহু দুটি পরস্পর সমান্তরাল। যদি \(\angle\)ABC=75° হয়, তবে \(\angle\)BCD এর পরিমাপ হল –
(a) 30° (b) \(\frac{75°}{2}\) (c) 45° (d) 75°
503. A, B ও C-এর মূলধনের অনুপাত \(\frac{1}{6}:\frac{1}{5}:\frac{1}{4}\) হলে, লভ্যাংশ বণ্টন হবে 4:5:6 অনুপাতে।
504. \(7x^2+5x-4=0\) দ্বিঘাত সমীকরণের বীজদ্বয় \(\alpha\) ও \(\beta\) হলে \(\cfrac{\alpha^2}{\beta}+\cfrac{\beta^2}{\alpha}\) এর মান নির্ণয় করাে।
505. O কেন্দ্রীয় বৃত্তের AOB ব্যাস। \(\angle\)BCE=20°, \(\angle\)CAE=25° হলে, \(\angle\)AEC-এর মান নির্ণয় করাে-
(a) 50° (b) 90° (c) 45° (d) 20°
506. \(x\) ডেসিমিটার গভীর একটি কূপ খনন করার জন্য মোট ব্যয়ের এক অংশ \(x\)-এর সঙ্গে সরলভেদে এবং অপর অংশ \(x^2\)-এর সঙ্গে সরলভেদে পরিবর্তিত হয়। যদি 100 ডেসিমিটার এবং 200 ডেসিমিটার কূপ খনন করার জন্য যথাক্রমে 5000 টাকা এবং 12000 টাকা ব্যয় হয়, তবে 250 ডেসিমিটার গভীর কূপ খননের জন্য কত ব্যয় হবে হিসাব করে লিখি।
507. \(a:4=b:10\) হলে \(a\) এর \(25\% =b\) এর ____\(\%\)।
508. \(ab:c^2, bc:a^2\) এবং \(ca:b^2\) এর মিশ্র অনুপাত এর ব্যস্ত অনুপাতের মান \(1:1\)
509. O কেন্দ্রীয় বৃত্তের AB ব্যাস। ABCD বৃত্তস্থ চতুর্ভূজ । \(\angle\)ABC=65°, \(\angle\)DAC=60° হলে, \(\angle\)BCD এর মান কত?
510. \(5x^2+2x-3=0\) দ্বিঘাত সমীকরণের বীজদ্বয় \(\alpha\) ও \(\beta\) হলে \(\cfrac{\alpha^2}{\beta}+\cfrac{\beta^2}{\alpha}\) এর মান নির্ণয় করাে।
511. \(x=3+\sqrt5, xy=4\) হলে \(\cfrac{x^2-xy+y^2}{x^2+xy+y^2}\) এর মান নির্ণয় করো ।
512. \(\triangle\)ABC এর একটি মধ্যমা AD অঙ্কন করাে। যদি BC-এর সমান্তরাল কোনাে সরলরেখা AB ও AC বিন্দুদ্বয়কে যথাক্রমে P ও Q বিন্দুতে ছেদ করে তবে প্রমাণ করাে যে, AD দ্বারা PQ সরলরেখাংশ সমদ্বিখণ্ডিত হয়।
513. একটি অংশীদারি কারবারে B এর মূলধন A এর মূলধনের \(1\frac{1}{2}\) গুণ। ৪ মাস পর B তার মূলধনের অর্ধেক এবং আরও 2 মাস পর A তার মূলধনের \(\frac{1}{4}\) অংশ তুলে নেয়। ওই বছরে 6360 টাকা লাভ হলে A কত টাকা পাবে?
514. ABCD একটি বৃত্তস্থ চতুভুজ। \(\angle\)A:\(\angle\)B:\(\angle\)C=3:4:5 হলে, \(\angle\)A:\(\angle\)D-এর মান -
(a) 3:6 (b) 3:4 (c) 5:6 (d) 3:5
515. \(x ∝ y\) এবং \(y=8\) যখন \(x=2; y=16\) হলে, \(x\)-এর মান -
(a) 2 (b) 8 (c) 6 (d) 4
516. O কেন্দ্রীয় একটি বৃত্তের AB ব্যাস। ABCD বৃত্তস্থ চতুর্ভুজ যার AB\(\parallel\) DC এবং \(\angle\)BAC=75° \(\angle\)BCD এর মান হবে-
(a) 60° (b) 45° (c) 75° (d) 50°
517. A এর মূলধন, B এর মূলধনের \(2\frac{1}{2}\) গুণ হলে, A ও B এর লাভের অনুপাত 2:5 হবে।
518. \(y\) এর ঘন, \(x\) এর বর্গের সহিত ব্যাস্তভেদে আছে এবং \(y=3\) যখন \(x=16; x=2\) হলে \(y\) এর মান কত ?
519. ABCD বৃত্তস্থ চতুর্ভুজের AB ও DC বাহুকে বর্ধিত করায় P বিন্দুতে এবং AD ও BC বাহুকে বর্ধিত করায় Q বিন্দুতে মিলিত হয়। \(\angle\)ADC=85° এবং \(\angle\)BPC=40° হলে, \(\angle\)CQD এর মান কত?
520. দুটি বৃত্ত পরস্পরকে c বিন্দুতে বহিঃস্পর্শ করে। বৃত্তদ্বয়ের একটি সরল সাধারণ স্পর্শক বৃত্ত দুটিকে যথাক্রমে A ও B বিন্দুতে স্পর্শ করে। \(\angle\)ACB এর মান
(a) 60° (b) 45° (c) 90° (d) 30°
521. একটি লম্ব বৃত্তাকার চোঙের বক্রতলের ক্ষেত্রফল \(S\), তার ঘনফল \(V\) এবং ব্যাসার্ধ। \(r\) হলে \(\cfrac{Sr}{V}\) এর মান
(a) 2 (b) 4 (c) 8 (d) কোনােটিই নয়
522. \(x \propto \cfrac{1}{y}\) হলে \(x+y\) এর মান ক্ষুদ্রতম হবে যখন \(x=y\)
523. AOB বৃত্তের ব্যাস। AC ও BD দুটি জ্যাকে গত করলে E বিন্দুতে মিলিত হয়। \(\angle\)COD=40° হলে \(\angle\)CED এর মান নির্ণয় করো ।
524. ABCD একটি বৃত্তস্থ চতুর্ভুজ। \(\angle\)ABC=65°, \(\angle\)CAD =40° হলে \(\angle\)BCD এর মান-
(a) 70° (b) 25° (c) 115° (d) 90°
525. \(\triangle\)ABC এর পরিকেন্দ্র O। \(\angle\)OAB=50° হলে \(\angle\)ACB এর মান –
(a) 50° (b) 100° (c) 80° (d) 40°
526. \(\triangle\)ABC এর পরিকেন্দ্র O এবং \(\angle\)BAC=65° হলে \(\angle\)OBC এর মান নির্ণয় করাে।
527. দুটি সমকোণী চৌপলের বাহুগুলির দৈর্ঘ্য যথাক্রমে ৪ সেমি, 12 সেমি, 15 সেমি, 6, (2h-1) সেমি 16 সেমি। সমকোণী চৌপল দুটির আয়তন সমান হলে, h এর মান নির্ণয় করাে।
528. O কেন্দ্রীয় বৃত্তের AB ব্যাস। M পরিধিস্থ একটি বিন্দু। \(\angle\)MAB=72° হলে, \(\angle\)MBA এর মান
(a) 72° (b) 18° (c) 108° (d) কোনােটিই নয়
529. \(\cfrac{a}{2}=\cfrac{b}{3}=\cfrac{c}{4}=\cfrac{2a-3b+4c}{p}\) হলে, \(p\) -এর মান নির্ণয় করাে।
530. O কেন্দ্রীয় বৃত্তের AB একটি জ্যা। B বিন্দুতে PT স্পর্শক। যদি \(\angle\)ABT=54°, তবে \(\angle\)AOB এর মান কত?
531. ABCD একটি বৃত্তস্থ চতুর্ভুজ। যদি \(\angle\)BAD=65° \(\angle\)ABD=70° এবং \(\angle\)BDC=45° হয় তবে \(\angle\)ACB এর মান কত?
532. \(\triangle\)ABC এর BC বাহুর সমান্তরাল সরলরেখা AB ও AC বাহুকে যথাক্রমে P ও Q বিন্দুতে ছেদ করে। যদি AQ=2AP হয় তবে PB:QC অনুপাতটি কত?
533. যদি \(ax^2+7x+b=0\) দ্বিঘাত সমীকরণের দুটি বীজ \(\cfrac{2}{3}\) ও \(-3\) হয় তবে \(a\) ও \(b\) -এর মান নির্ণয় করাে।
534. \(x=\cfrac{\sqrt5+1}{\sqrt5-1}\) এবং \(xy=1\) হলে, \(\cfrac{3x^2+5xy+3y^2}{3x^2-5xy+3y^2}\)-এর মান কত ?
535. বিমলকাকু তার 13 ও 15 বছর বয়সের দুই পুত্রের নামে 56000 টাকা এমনভাবে ভাগ করে ব্যাঙ্কে রাখলেন যে তাদের বয়স যখন 18 বছর হবে তখন বার্ষিক 10% সরল সুদের হারে প্রত্যেকের প্রাপ্ত সুদ আসল এর পরিমাণ সমান হবে। তিনি কার নামে কত টাকা জমা রেখেছিলেন।
536. পাশের চিত্রে \(\angle\)ACB= \(\angle\)BAD এবং AD\(\bot\)BC; AC=15cm, AB=20cm এবং BC=25cm হলে AD এর দৈর্ঘ্য কত তা লেখাে।
537. ABC ত্রিভুজের পরিকেন্দ্র O। যদি \(\angle\)ABC=65°, \(\angle\)BCA=40° হয় তবে \(\angle\)BOC-এর মান _____
538. \(x:y =3:4\) হলে, \((3y-x) : (2x+y)\)-এর মান নির্ণয় করাে।
539. \(x=3+\sqrt5, xy=4\) হলে \(\cfrac{x^2-3xy+y^2}{x^2+3xy+y^2}\) এর মান নির্ণয় করো ।
540. \(\triangle\)ABC-এর লম্ব বিন্দু O; \(\angle\)BOC=110° হলে \(\angle\)BAC-এর মান
(a) 55° (b) 20° (c) 70° (d) কোনােটিই নয়
541. একটি অংশীদারী ব্যবসায় A, B ও C-এর মূলধনের অনুপাত \(\frac{1}{6}:\frac{1}{5}:\frac{1}{4}\) । বছরের শেষে মোট লাভ 7400 টাকা হলে, B-এর লাভ কত হবে?
542. 10 সেমি দৈর্ঘ্যের ব্যাসার্ধের দুটি সমান বৃত্ত পরস্পরকে ছেদ করে এবং তাদের সাধারণ জ্যা-এর দৈর্ঘ্য 12 সেমি। বৃত্তদুটির কেন্দ্রদ্বয়ের মধ্যে দূরত্ব নির্ণয় করো।
543. জ্যামিতিক উপায়ে \(\sqrt{33}\) এর মান নির্ণয় করো।
544. যদি নীচের তথ্যের মধ্যমা 28.5 হয়, এবং পরিসংখ্যার সমষ্টি 60 হয়, তাহলে x ও y-এর মান নির্ণয় করি।
545. যদি \(\alpha, \beta\) \(3x^2+8x+2=0\) সমীকরণের বীজদ্বয় হয় তবে\( \cfrac{1}{\alpha}+\cfrac{1}{\beta}\) এর মান হবে –
(a) \(-\cfrac{3}{8}\) (b) 4 (c) \(\cfrac{2}{3}\) (d) -4
546. যদি \(3x = cosec \alpha\) এবং \(\cfrac{3}{x}=cot \alpha\) হয় \(3\left(x^2-\cfrac{1}{x^2}\right)\) এর মান -
(a) \(\cfrac{1}{27}\) (b) \(\cfrac{1}{81}\) (c) \(\cfrac{1}{3}\) (d) \(\cfrac{1}{9}\)
547. যদি\( a \propto b, b \propto \cfrac{1}{c}\), এবং \(c \propto d\) হয়। \( a\) ও \(d\) এর মধ্যে ভেদ সম্পর্ক নির্ণয় করো।
548. যদি BC||AD, \(\angle\)CDE=80°, \(\angle\)CBD=30°, \(\angle\)ABD, \(\angle\)ACD, \(\angle\)BAD এর মান নির্ণয় করো।
549. যদি \(cot 67\frac{1^o}{2} = x (>0)\) হয় \(sin 22\frac{1^o}{2}\) মান নির্ণয় করো।
550. AOB বৃত্তের একটি ব্যাস। C বৃত্তের ওপর একটি বিন্দু। \(\angle\)OBC=60° হলে \(\angle\)OCA এর মান নির্ণয় করো।
551. ধূমপান বিরোধী প্রচারের ফলে প্রতি বছর ধুমপায়ী সংখ্যা \(6 \cfrac{1}{4}\%\) হারে হ্রাস পায়। বর্তমান কোনো শহরে 33,750জন ধূমপায়ী থাকলে, 3 বছর পূর্বে ওই শহরে কতজন ধূমপায়ী ছিল, তা নির্ণয় করো।
552. যদি নীচের তথ্যের মধ্যমা 28.5 হয়, এবং পরিসংখ্যার সমষ্টি 60 হয়, তাহলে x ও y-এর মান নির্ণয় করি।
553. একটি লম্ব বৃত্তাকার চোঙের বক্রতলের ক্ষেত্রফল \(C\) বর্গএকক,ভূমির ব্যাসার্ধের দৈর্ঘ্য \(r\) একক এবং আয়তন \(V\) ঘনএকক হলে \(\cfrac{Cr}{V}\) এর মান নির্ণয় করো।
554. একটি অংশীদারী ব্যবসায়, A, B ও C-এর মূলধনের অনুপাত \(\frac{1}{6}:\frac{1}{5}:\frac{1}{4}\) । বছর শেষে মোট লাভ 3700 টাকা C-এর লাভ কত?
555. জ্যামিতিক উপায়ে √21 এর মান নির্ণয় করো। (কেবলমাত্র অঙ্কন চিহ্ন দিতে হবে)।
556. একটি চালকের তিনটি মান 4, 5, 7 এবং তাদের পরিসংখ্যা যথাক্রমে (P-2), (P+1), (P-1)। চালকটির যৌগিক গড় 5.4 হলে P-এর মান হবে-
(a) 4 (b) 1 (c) 2 (d) 3
557. \((a+b):\sqrt{ab}= 2:1\) হলে \(a:b\) এর মান হবে 1:1
558. একটি যৌথ ব্যবসায় A, B ও C এর মূলধনের অনুপাত \(\frac{1}{2}:\frac{1}{3}:\frac{1}{4}\) । 4 মাস পরে A তার মূলধনের অর্ধেক তুলে নেয় এবং তার ৪ মাস পরে মোট লাভের পরিমাণ 61,050 টাকা হয়। প্রত্যেকের লভ্যাংশ কত?
559. 11, 12, 14, x-2, x+4, x+9, 32, 38, 47 রাশিগুলি ঊর্ধ্বক্রমানুসারে সাজানো এবং তাদের মধ্যমা 24 হলে, x এর মান নির্ণয় করো।
560. একটি লম্ব বৃত্তাকার শঙ্কুর আয়তন এবং পার্শ্বতলের ক্ষেত্রফলের সাংখ্যমান সমান। শঙ্কুর উচ্চতা \(h\) এবং ব্যাসার্ধ \(r\) হলে \(\cfrac{1}{h^2}+\cfrac{1}{r^2}\) নির্ণয় করো।
561. দুটি বৃত্ত পরস্পরকে বহিস্থভাবে C বিন্দুতে স্পর্শ করেছে। একটি সরল সাধারণ স্পর্শক বৃত্ত দুটিকে A ও B বিন্দুতে স্পর্শ করলে \(\angle\)ACB এর মান -
(a) 60° (b) 45° (c) 30° (d) 90°
562. \(x-2\) এবং \(x+3\) মধ্যসমানুপাতীটি \(x\) হলে \(x\) এর মান _____ ।
563. যদি নীচের তথ্যের মধ্যমা 28.5 হয়, এবং পরিসংখ্যার সমষ্টি 60 হয়, তাহলে x ও y-এর মান নির্ণয় করি।
564. নীচে প্রদত্ত মানসমূহের যৌগিক গড় \(9.5\) হলে \(x\) এর মান নির্ণয় করো : \(12, 6, 7, 3, x, 10, 18, 5\)
565. \(tan\theta cos60°=\cfrac{\sqrt3}{2}\) হলে, \(sin (\theta-15°)\) -এর মান কত?
(a) \(1\) (b) \(0\) (c) \(\sqrt2\) (d) \(\cfrac{1}{\sqrt2}\)
566. ধূমপান বিরোধী প্রচারের ফলে প্রতি বছর ধূমপায়ীর সংখ্যা \(6 \cfrac{1}{4}\%\) হারে হ্রাস পায়। বর্তমানে কোনো শহরে 33,750জন ধূমপায়ী থাকলে, 3 বছর পূর্বে ওই শহরের ধূমপায়ীর সংখ্যা কত ছিল?
567. যদি \(3x cosec \alpha\) এবং \(y =cot \alpha\) হয় তবে, \(3\left(x^2-\cfrac{1}{x^2}\right)\) এর মান হবে -
568. 10 সেমি দৈর্ঘ্যের ব্যাসার্ধের দুটি সমান বৃত্ত পরস্পরকে ছেদ করে এবং তাদের সাধারণ জ্যা-এর দৈর্ঘ্য 12 সেমি। বৃত্ত দুটি কেন্দ্রদ্বয়ের মধ্যে দূরত্ব নির্ণয় করো।
569. ধূমপান বিরোধী প্রচারের ফলে প্রতি বছর ধূমপায়ীর সংখ্যা \( 6 \cfrac{1}{4}\)% হারে হ্রাস পায়। বর্তমানে কোনো শহরে 33750 জন ধূমপায়ী থাকলে, 3 বছর পূর্বে ঐ শহরে কতজন ধূমপায়ী ছিল?
570. \(\triangle\)ABC এর AC এবং BC বাহু দুটির উপর যথাক্রমে L এবং M দুটি বিন্দু এমনভাবে অবস্থান করে যাতে LM \(\parallel\) AB এবং AL = (x - 2 ) একক, AC = 2x + 3 একক, BM = (x - 3 ) একক এবং BC = 2x একক, তবে x এর মান নির্ণয় করো। Madhyamik 2023
571. একটি লম্ব বৃত্তাকার শঙ্কুর আয়তন V ঘন একক। ভূমি তলের ক্ষেত্রফল A বর্গএকক এবং উচ্চতা H একক হলে, \(\frac{AH}{V}\) এর মান নির্ণয় করো।
572. সরলতম মান নির্ণয় করো। \(\cfrac{\sqrt5}{\sqrt3+\sqrt2}-\cfrac{3\sqrt3}{\sqrt2 +\sqrt5}+ \cfrac{2\sqrt2}{\sqrt3+ \sqrt5}\) Madhyamik 2022
573. \(m +\cfrac{1}{m} = √3\) হলে, (a) \(m^2 + \cfrac{1}{m^2}\) এবং (b) \(m^3 + \cfrac{1}{m^3}\) এদের সরলতম মান নির্ণয় করো Madhyamik 2022
574. AOB বৃত্তের একটি ব্যাস যার কেন্দ্র O, C বৃত্তের উপর একটি বিন্দু। \(\angle\)OBC = 60° হলে \(\angle\)OCA এর মান নির্ণয় করো। Madhyamik 2022
575. কোনো ব্যবসাতে A, B, C এর মূলধানের অনুপাত \(\cfrac{1}{x}:\cfrac{1}{y}:\cfrac{1}{z}\) বছরের শেষে ব্যবসাতে \(z\) টাকা ক্ষতি হয়েছে। C এর ক্ষতির পরিমাণ নির্ণয় করো। Madhyamik 2022
576. একটি চলকের তিনটি মান \(4, 5\) এবং \(7\), তাদের পরিসংখ্যা যথাক্রমে \(p - 2, p + 1\) ও \(p - 1\) . চলকটির যৌগিক গড় \(5.4\) হলে \(p\) এর মান হবে : Madhyamik 2023
577. \((a^2bc)\) এবং \((4bc)\) এর মধ্য সমানুপাতী \(x\) হলে, \(x\) এর মান ______ । Madhyamik 2023
578. \(\cos 36°\) এবং \(\sin 54°\) এর মান সমান। Madhyamik 2023
579. কোনো ব্যবসায় A ও B এর মূলধনের অনুপাত \(\cfrac{1}{7}:\cfrac{1}{4}\) বছরের শেষে 11,000 টাকা লাভ হলে তাদের লভ্যাংশের পরিমাণ নির্ণয় করো। Madhyamik 2023
580. দুটি বৃত্ত পরস্পরকে C বিন্দুতে বহিঃস্পর্শ করে। বৃত্ত দুটির একটি সাধারণ স্পর্শক AB বৃত্ত দুটিকে A ও B বিন্দুতে স্পর্শ করে। \(\angle\)ACB এর মান নির্ণয় করো। Madhyamik 2023
581. \(tan 2A = cot (A - 30° )\) হলে, \(sec ( A \) \(+ 20°)\) এর মান নির্ণয় করো। Madhyamik 2023
582. \(tan \theta=\cfrac{8}{15}\) হলে, \(sin \theta\) র মান নির্ণয় করো। Madhyamik 2023
583. একটি লম্ব বৃত্তাকার শঙ্কুর আয়তন \(V\) ঘন একক, ভূমিতলের ক্ষেত্রফল \(A\) বর্গ একক এবং উচ্চতা \(H\) একক হলে \(\cfrac{AH}{3V}\) এর মান নির্ণয় করো। Madhyamik 2023
584. ধূমপান বিরোধী প্রচারের ফলে প্রতি বছর ধূমপায়ীর সংখ্যা \( 6 \cfrac{1}{4}\)% হারে হ্রাস পায়। বর্তমানে কোনো শহরে 22500 জন ধূমপায়ী থাকলে, 2 বছর পূর্বে ওই শহরে কতজন ধূমপায়ী ছিল ? Madhyamik 2023
585. ABCD একটি বৃত্তস্থ চতুর্ভুজ। \(\angle\)DAB এবং \(\angle\)BCD এর সমদ্বিখন্ডকদ্বয় বৃত্তকে যথাক্রমে X ও Y বিন্দুতে ছেদ করেছে। O বৃত্তটির কেন্দ্র হলে \(\angle\)XOY এর মান নির্ণয় করো। Madhyamik 2023
586. \((a-2)x^2+3x+5=0\) সমীকরণটি \(a\) এর কোন মানের জন্য দ্বিঘাত সমীকরণ হবে না তা নির্ণয় করি ।
587. \(\cfrac{x}{4-x}=\cfrac{1}{3x}\) , \((x≠0, x≠4)\)- কে \(ax^2+bx+c=0 (a≠0)\) দ্বিঘাত সমীকরণের আকারে প্রকাশ করলে x এর সহগ কত হবে তা নির্ণয় করি ।
588. \((x+2)^3=x(x^2-1)\) -কে \(ax^2+\) \(bx+c=0\) \((a≠0)\) দ্বিঘাত সমীকরণের আকারে প্রকাশ করি এবং \(x^2,x\) ও \(x^0\) - এর সহগ লিখি ।
589. \(x^2+x+1=0, 1\) ও \(-1\)
590. \(x+ \cfrac{1}{x}=\cfrac{13}{6} ,\cfrac{5}{6}\) ও \(\cfrac{4}{3}\)
591. \(k\) -এর কোন মানের জন্য \(7x^2+kx-3=0\) দ্বিঘাত সমীকরণের একটি বীজ \(\cfrac{2}{3}\) হবে হিসাব করে লিখি ।
592. \(k\) -এর কোন মানের জন্য \(x^2+3ax+k=0\) দ্বিঘাত সমীকরণের একটি বীজ \(-a\) হবে হিসাব করে লিখি ।
593. যদি \(ax^2+7x+b=0\) দ্বিঘাত সমীকরণের দুটি বীজ \(\cfrac{2}{3}\) ও \(-3\) হয় তবে \(a\) ও \(b\) -এর মান নির্ণয় করি ।
594. \(x^2+ax+3=0\) সমীকরণের একটি বীজ 1 হলে, \(a\) এর মান নির্ণয় করি |
595. \(ax^2+bx+35=0\) সমীকরণের বীজদ্বয় -5 ও -7 হলে, \(a\) এবং \(b\) এর মান লিখি।
596. \(49x^2+kx+1=0\)
597. \(x^2-2(5+2k)x+3(7+10k)=0\)
598. \((3k+1)x^2+2(k+1)x+k=0\)
599. প্রমান করি যে, \(2(a^2+b^2)x^2+2(a+b)x+1=0\) দ্বিঘাত সমীকরণের কোনো বাস্তব বীজ থাকবে না, যদি \(a≠b\) হয় ।
600. \(α^2+β^2\)
601. \(α^3+β^3\)
602. \(\cfrac{α^2}{β}+\cfrac{β^2}{α}\)
603. \(x^2-3x+k=10\) সমীকরণের বীজদ্বয়ের গুণফল \(-2\) হলে, \(k\) এর মান
604. \(3x^2+8x+2=0\) সমীকরণের বীজদ্বয় \(α\) এবং \(β\) হলে, \(\left(\cfrac{1}{α}+\cfrac{1}{β}\right)\) এর মান
605. \(kx^2+2x+3k=0(k≠0)\)সমীকরণের বীজদ্বয়ের সমষ্টি এবং গুণফল সমান হলে, \(k\) এর মান লিখি ।
606. আমি \(x^3-4x^2-x+1=(x+2)^3\) সমীকরনটিকে সাধারন দ্বিঘাত সমীকরনের সাধারন রূপে প্রকাশ করে, \(x^2,x\) ও \(x^0\) এর সহগ লিখি ।
607. \(k\) এর মান কত হলে \(9x^2+3kx+4=0\) দ্বিঘাত সমীকরণের বীজদ্বয় বাস্তব ও সমান হবে লিখি ।
608. দুটি বৃত্তাংশ সমান হলে তাদের বৃত্তচাপ দুটির দৈর্ঘ্য \(\bbox[white,12px,border:1px solid black] {\,\,\,\,\,\,\,\,\,\,\,}\) হবে ।
609. একটি বৃত্তাকার ক্ষেত্রের বৃত্তকলা হলো বৃত্তচাপ এবং দুটি \(\bbox[white,12px,border:1px solid black] {\,\,\,\,\,\,\,\,\,\,\,}\) এর দ্বারা সীমাবদ্ধ অঞ্চল ।
610. একটি বৃত্তের AB ও AC জ্যা দুটি সমান। প্রমাণ করি যে, \(\angle\)BAC -এর সমদ্বিখন্ডক কেন্দ্রগামী।
611. O কেন্দ্রীয় বৃত্তের AB ও CD জ্যা দুটির দৈর্ঘ্য সমান । \(\angle\)AOB=60° হলে \(\angle\)COD এর মান
612. AB ও CD দুটি সমান্তরাল জ্যা-এর প্রত্যেকটির দৈর্ঘ্য 16 সেমি । বৃত্তের ব্যাসার্ধের দৈর্ঘ্য 10 সেমি হলে, জ্যা দুটির মধ্যে দুরত্ব
613. 10 সেমি দৈর্ঘ্যের ব্যাসার্ধের দুটি সমান বৃত্ত পরস্পরকে ছেদ করে এবং তাদের সাধারণ জ্যা- এর দৈর্ঘ্য 12 সেমি। বৃত্ত দুটির কেন্দ্রদ্বয়ের মধ্যে দূরত্ব নির্ণয় করি ।
614. একটি বর্গাকার ভূমিবিশিষ্ট পিতলের প্লেটের দৈর্ঘ্য x সেমি, বেধ 1 মিলিমি এবং প্লেটটির ওজন 4725 গ্রাম। যদি 1 ঘনসেমি পিতলের ওজন 8.4 গ্রাম হয় তাহলে x-এর মান কত হবে তা হিসাব করে লিখি ।
615. একটি আয়তঘনের তল সংখ্যা \(x\) ধার সংখ্যা \(y\) শীর্ষবিন্দুর সংখ্যা \(z\) এবং কর্ণের সংখ্যা \(p\) হলে \((x-y+z+p)\) -এর মান কত তা লিখি।
616. দুটি আয়তঘনের মাত্রাগুলির দৈর্ঘ্য যথাক্রমে 4,6,4 একক এবং 8,(2h-1),2 একক। যদি আয়তঘন দুটির ঘনফল সমান হয়, তাহলে h-এর মান কত তা লিখি।
617. \( 10:35::x:42\)
618. 6,15,20 ও 43-এর প্রত্যেকটির সঙ্গে কত যোগ করলে যোগফলগুলি সমানুপাতী হবে হিসাব করে লিখি।
619. একটি মৎস্যজীবী সমবায় সমিতি উন্নত প্রথায় মাছ চাষ করার জন্য এরূপ একটি পরিকল্পনা গ্রহন করেছে যে কোনো বছরের মাছের উৎপাদন পূর্ববর্তী বছরের তুলনায় 10% বৃদ্ধি করবে। বর্তমান বছরে যদি ওই সমবায় সমিতি 400 কুইন্টাল মাছ উৎপাদন করে, তবে 3 বছর পরে সমবায় সমিতির মাছের উৎপাদন কত হবে, তা হিসাব করে লিখি ।
620. ধূমপান বিরোধী প্রচারের ফলে প্রতি বছর ধূমপায়ীর সংখ্যা \( 6 \cfrac{1}{4}\)% হারে হ্রাস পায় । বর্তমানে কোনো শহরে 33750 জন ধূমপায়ী থাকলে, 3 বছর পুর্বে ওই শহরে কত জন ধূমপায়ী ছিল, তা হিসাব করে লিখি ।
621. \(x=\cfrac{8ab}{a+b}\) হলে, \(\left(\cfrac{x+4a}{x-4a}+\cfrac{x+4b}{x-4b}\right)\) এর মান হিসাব করে লিখি।
622. \(\cfrac{ax+by}{a}=\cfrac{bx-ay}{b}\) হলে দেখাই যে, প্রতিটি অনুপাত \(x\) এর সমান ।
623. \(\cfrac{a}{2}=\cfrac{b}{3}=\cfrac{c}{4}=\cfrac{2a-3b+4c}{p}\) হলে, \(p\)-এর মান নির্ণয় করি।
624. 2, 4, 6 ও 10 -এর প্রত্যেকের সঙ্গে কোন সংখ্যা যােগ করলে যােগফলগুলি সমানুপাতী হবে হিসাব করে লিখি।
625. সমান ব্যাস ও উচ্চতাবিশিষ্ট তিনটি জারের প্রথমটির \(\frac{2}{3}\) অংশ, দ্বিতীয়টির \(\frac{5}{6}\) অংশ এবং তৃতীয়টির \(\frac{7}{9}\) অংশ লঘু সালফিউরিক অ্যাসিডে পূর্ণ ছিল । ওই তিনটি জারের অ্যাসিড যদি 2.1 দেসিমি. দৈর্ঘ্যের ব্যাসের একটি জারে রাখা হয়, তবে জারে অ্যাসিডের উচ্চতা 4.1 ডেসিমি. হয় । প্রথম তিনটি জারের ব্যাসের দৈর্ঘ্য 1.4 ডেসিমি. হলে, তাদের উচ্চতা হিসাব করে লিখি ।
626. একটি লম্ব বৃত্তাকার চোঙের বক্রতলের ক্ষেত্রফল \(c\) বর্গ একক, ভূমির ব্যাসার্ধের দৈর্ঘ্য \(r\) একক এবং আয়তন \(v\) ঘন একক হলে, \(\cfrac{cr}{v}\) এর মান কত তা লিখি ।
627. একটি নিরেট গোলকের বক্রতলের ক্ষেত্রফল \(=S\) এবং আয়তন \(=V\) হলে,\( S^3/V^2\) এর মান কত তা লিখি ।\( (π \)এর মান না বসিয়ে)
628. পাশের চিত্রে O কেন্দ্রীয় বৃত্তের \(\angle\)AOD = 40° এবং \(\angle\)ACB = 35°; \(\angle\)BCO ও \(\angle\)BOD-এর মান হিসাব করে লিখি ও উত্তরের সপক্ষে যুক্তি দিই।
629. পাশের চিত্রের O কেন্দ্রীয় বৃত্তের \(\angle\)APB = 80° হলে, \(\angle\)AOB ও \(\angle\)COD-এর মানের সমষ্টি নির্ণয় করি ও উত্তরের সপক্ষে যুক্তি দিই।
630. ABC ত্রিভুজের O পরিকেন্দ্র। \(\angle\)OAB = 50° হলে, \(\angle\)ACB-এর মান
(a) 50° (b) 100° (c) 40° (d) 80°
631. ABC ত্রিভুজের পরিকেন্দ্র O এবং D বিন্দু BC বাহুর মধ্যবিন্দু। \(\angle\)BAC = 40° হলে, \(\angle\)BOD-এর মান নির্ণয় করি।
632. O কেন্দ্রীয় বৃত্তের উপর A, B, C তিনটি বিন্দু এমনভাবে অবস্থিত যে AOCB একটি সামান্তরিক। \(\angle\)AOC-এর মান নির্ণয় করি।
633. পাশের ছবিতে \(\angle\)DBA = 40°, \(\angle\)BAC = 60° এবং\(\angle\)CAD=20°; \(\angle\)DCA ও \(\angle\)BCA-এর মান নির্ণয় করি। \(\angle\)BAD ও \(\angle\)DCB-এর মানের সমষ্টি কত হবে হিসাব করে দেখি।
634. পাশের চিত্রে AOB বৃত্তের ব্যাস এবং বৃত্তের কেন্দ্র। OCব্যাসার্ধ AB-এর উপর লম্ব। যদি উপচাপ CB-এর উপর কোনো বিন্দু P হয়, তবে \(\angle\)BAC ও \(\angle\)APC-এর মান হিসাব করে লিখি।
635. পাশের চিত্রে O বৃত্তের কেন্দ্র। \(\angle\)BAD = 65°, \(\angle\)BDC = 45° হলে, \(\angle\)CBD-এর মান।
(a) 65° (b) 45° (c) 40° (d) 20°
636. পাশের চিত্রে O বৃত্তের কেন্দ্র। \(\angle\)BCD = 28°, \(\angle\)AEC = 38° হলে, \(\angle\)AXB-এর মান
(a) 56° (b) 86° (c) 38° (d) 28°
637. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AB ব্যাস। AB || CD. \(\angle\)ABC = 25° হলে, \(\angle\)CED-এর মান
(a) 80° (b) 50° (c) 25° (d) 40°
638. পাশের চিত্রে O বৃত্তের কেন্দ্র, AC ব্যাস এবং জ্যা DE ও ব্যাস AC সমান্তরাল। \(\angle\)CBD = 60° হলে, \(\angle\)CDE-এর মান নির্ণয় করি।
639. পাশের চিত্রে \(\angle\)PQR-এর সমদ্বিখণ্ডক QS; \(\angle\)SQR = 35° এবং \(\angle\)PRQ = 32° হলে , \(\angle\)QSR-এর মান নির্ণয় করি।
640. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AB ব্যাস। AB ও CD পরস্পর লম্ব এবং \(\angle\)ADC= 50° ; \(\angle\)CAD-এর মান নির্ণয় করি।
641. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AB = AC; \(\angle\)ABC = 32° হলে , \(\angle\)BDC-এর মান নির্ণয় করি।
642. O কেন্দ্রীয় বৃত্তে PQ একটি ব্যাস এবং PR = RQ; \(\angle\)RPQ -এর মান।
(a) 30° (b) 90° (c) 60° (d) 45°
643. AOB বৃত্তের ব্যাস। AC এবং BD জ্যা দুটি বর্ধিত করলে E বিন্দুতে মিলিত হয়। \(\angle\)COD = 40° হলে, \(\angle\)CED-এর মান
(a) 40° (b) 80° (c) 20° (d) 70°
644. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AB ব্যাস। \(\angle\)BCE = 20° , \(\angle\)CAE = 25° হলে , \(\angle\)AEC-এর মান নির্ণয় করি।
645. AOB বৃত্তের একটি ব্যাস। C বৃত্তের উপর একটি বিন্দু। \(\angle\)OBC = 60° হলে \(\angle\)OCA-এর মান নির্ণয় করি।
646. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AB ব্যাস। জ্যা CD-এর দৈর্ঘ্য বৃত্তের ব্যাসার্ধের দৈর্ঘ্যের সমান। AC ও BD-কে বর্ধিত করায় P বিন্দুতে ছেদ করে। \(\angle\)APB-এর মান নির্ণয় করি।
647. পাশের চিত্রে O কেন্দ্রীয় বৃত্তে AB ব্যাস। C বৃত্তের উপর যে-কোনাে একটি বিন্দু। \(\angle\)BAC= 50° এবং CD, AB-এর উপর লম্ব হলে, \(\angle\)BCD-এর মান নির্ণয় করি।
648. সরলতম মান নির্ণয় করি: \(\sqrt{12}+\sqrt{18}+\sqrt{27}-\sqrt{32}\)
649. (√5+√2) ÷√7=1/7 (√35+a) হলে, a-এর মান নির্ণয় করি ।
650. \(3^{\frac{1}{2}}\) ও \(\sqrt{3}\) এর গুনফল নির্ণয় করি ।
651. √6 ×√15=x√10 হলে x –এর মান হিসাব করে লিখি ।
652. \((√5+√3)(√5-√3)=25-x^2\) একটি সমীকরণ হলে,\(x\) –এর মান হিসাব করে লিখি ।
653. ABCD বৃত্তস্থ চতুর্ভুজের AB ও DCবাহকে বর্ধিত করায় P বিন্দুতে এবং AD ও BC বাহুকে বর্ধিত করায় Q বিন্দুতে মিলিত হয়েছে। \(\angle\)ADC = 85° এবং \(\angle\)BPC = 40° হলে, \(\angle\)BAD ও \(\angle\)CQD-এর মান হিসাব করে লিখি।
654. \(\triangle\)ABC-এর একটি মধ্যমা AD অঙ্কন করেছি। যদি BC-এর সমান্তরাল কোনাে সরলরেখা AB ও AC বাহুদ্বয়কে যথাক্রমে P ও Q বিন্দুতে ছেদ করে, তবে প্রমাণ করি যে AD দ্বারা PQ সরলরেখাংশ সমদ্বিখণ্ডিত হবে।
655. θ (\(0° \le θ \le 90°\)) -এর কোন মানের জন্য sin\(^2\)θ-3sinθ+2 = 0 সত্য হবে নির্ণয় করি।
656. যদি নীচের পরিসংখ্যা বিভাজন তালিকার যৌগিক গড় 54 হয়, তবে k-এর মান নির্ণয় করি।
657. যদি নীচের তথ্যের মধ্যমা 28.5 হয়, এবং পরিসংখ্যার সমষ্টি 60 হয়, তাহলে x ও y-এর মান নির্ণয় করি।
658. নীচের প্রদত্ত রাশিতথ্য থেকে সংখ্যাগুরুমান নির্ণয় করি।
659. যদি নীচের প্রদত্ত তথ্যের যৌগিক গড় 20.6 হয়, তবে a-এর মান নির্ণয় করি :
660. যদি নীচের পরিসংখ্যা বিভাজন তালিকার নম্বরের যৌগিক গড় 24 হয়, তবে p-এর মান নির্ণয় করি।
661. আমাদের পাড়ার একটি জুতোর দোকানে একটি বিশেষ কোম্পানির জুতো বিক্রির পরিসংখ্যা বিভাজন তালিকা হলো;
662.
663. যদি একটি চিমনির গোড়ার সঙ্গে সমতলে অবস্থিত একটি বিন্দুর সাপেক্ষে চিমনির চুড়ার উন্নতি কোণ 60° হয় এবং সেই বিন্দু ও চিমনির গোড়ার সঙ্গে একই সরলরেখায় অবস্থিত ওই বিন্দু থেকে আরও 24 মিটার দূরের অপর একটি বিন্দুর সাপেক্ষে চিমনির চুড়ার উন্নতি কোণ 30° হয়, তাহলে চিমনির উচ্চতা হিসাব করে লিখি। [√3 -এর আসন্ন মান 1.732 ধরে তিন দশমিক স্থান পর্যন্ত আসন্ন মান নির্ণয় করি]
664. \(\cfrac{\tan 35°}{\cot 55°}+\cfrac{\cot 78°}{\tan 12°}\) -এর মান
665. (sin 12°-cos78°)-এর সরলতম মান 1
666. sin 10θ = cos 8θ এবং 10θ ধনাত্মক সূক্ষ্মকোণ হলে, tan9θ -এর মান নির্ণয় করি।
667. tan 4θ × tan6θ =1 এবং 6θ ধনাত্মক সূক্ষ্মকোণ হলে, θ -এর মান নির্ণয় করি।
668. (tan 1°× tan2° × tan3°.................. tan89°) -এর মান নির্ণয় করি।
669. cosecθ- cotθ= √2 - 1 হলে, (cosecθ+ cotθ) -এর মান হিসাব করে লিখি।
670. sinθ+ cosθ=1 হলে, sinθ × cosθ এর মান নির্ণয় করি।
671. secθ- tanθ= \(\cfrac{1}{√3}\) হলে, secθ এবং tanθ উভয়ের মান নির্ণয় করি।
672. \(\cfrac{sinθ+cosθ}{sinθ-cosθ}=7\) হলে, tanθ-এর মান হিসাব করে লিখি।
673. \(\cfrac{cosecθ+sinθ}{cosecθ-sinθ}=\cfrac{5}{2}\) হলে, sinθ-এর মান হিসাব করে লিখি।
674. \(secθ+cosθ=\cfrac{5}{2}\) হলে, (secθ- cosθ) -এর মান হিসাব করে লিখি।
675. \(5sin^2 \theta+4cos^2 \theta=\cfrac{9}{2}\) সম্পর্কটি থেকে \(tan \theta\)-এর মান নির্ণয় করি।
676. PQR ত্রিভুজে ∠Q সমকোণ। PR=√5 একক এবং PQ-RQ=1 একক হলে, cosP-cosR -এর মান নির্ণয় করি।
677. যদি \(3x=cosecα \) এবং \(\cfrac{3}{x} = cot α\) হয়, তাহলে \(3(x^2-\cfrac{1}{x^2}) \) -এর মান
678. যদি \(2x=secA\) এবং \(\cfrac{2}{x} =tanA\) হয়, তাহলে \(2(x^2-\cfrac{1}{x^2})\)-এর মান
(a) \(\cfrac{1}{2}\) (b) \(\cfrac{1}{4}\) (c) \(\cfrac{1}{8}\) (d) \(\cfrac{1}{16}\)
679. \(tanα + cotα = 2\) হলে, \(tan^{13} α + cot^{13} α \) -এর মান
(a) 1 (b) 0 (c) 2 (d) কোনোটিই নয়
680. \(\left(\cfrac{4}{\sec^2 \theta}+\cfrac{1}{1+\cot^2 \theta}+3 \sin^2 \theta \right)\) এর মান ____________
681. \(\sin(θ –30°) =\cfrac{1}{2}\) হলে, \(\cos θ\) -এর মান ___________
682. \(\cos^2 θ -\sin^2 θ = \cfrac{1}{2}\) হলে, \(\cos^4 θ – \sin^4 θ\) -এর মান __________
683. যদি \(0°<θ<90°\) হয়, তাহলে \(9 \tan^2 θ+4 \cot^2 θ\)-এর সর্বনিম্ন মান নির্ণয় করি।
684. \(\sin^6 α+\cos^6 α+3\sin^2 α \cos^2 α\)-এর মান নির্ণয় করি।
685. যদি \(cosec^2 θ =2cot θ\) এবং \(0°<θ<90°\) হয়, তাহলে \(θ\) -এর মান নির্ণয় করি।
686. \(x sin 45° \) \(cos 45° \) \(tan 60° \) \(= tan^2 45°\) \(- cos60°\) হলে, \(x\)-এর মান নির্ণয় করি।
687. \(x sin 60° cos^2 30° = \cfrac{tan^2 45° sec60° }{cosec60°}\)হলে, \(x\)-এর মান নির্ণয় করি।
688. \(x^2 = sin^2 30° + 4cot^2 45° – sec^2 60°\) হলে, \(x\)-এর মান নির্ণয় করি।
689. একটি সমকোণী ত্রিভুজ ABC এঁকেছি যার অতিভুজ AB=10 সেমি., ভূমি BC= 8 সেমি. এবং লম্ব AC=6 সেমি.। ∠ABC-এর Sine এবং tangent-এর মান নির্ণয় করি।
690. যদি ABC একটি সমকোণী ত্রিভুজের ∠C=90°, BC=21 একক এবং AB=29 একক হয়, তাহলে sinA, cosA, sinB ও cosB-এর মান নির্ণয় করি।
691. যদি cotθ=2 হয়, তাহলে tanθ ও secθ-এর মান নির্ণয় করি এবং দেখাই যে, 1+tan\(^2\)θ = sec\(^2\)θ
692. যদি \(cotA= \cfrac{4}{7.5}\) হয়, তাহলে \(cosA\) এবং \(cosecA\)-এর মান নির্ণয় করি এবং দেখাই যে, \(1 + cot^2 A = cosec^2 A\)
693. যদি \(sin C= \cfrac{2}{3}\) হয়, তবে \(cos C × cosec C\)-এর মান হিসাব করে লিখি।
694. tanA-এর মান সর্বদা 1 অপেক্ষা বড়ো।
695. cotA-এর মান সর্বদা 1 অপেক্ষা ছোটো।
696. একটি কোণ α-এর জন্য secα = \(\cfrac{12}{5}\) হতে পারে।
697. একটি কোণ β(Beta)-এর জন্য cosecβ = \(\cfrac{5}{13}\) হতে পারে।
698. ABC ত্রিভুজের AB = (2a-1) সেমি., AC= 2√2a সেমি. এবং BC = (2a+1) সেমি. হলে ∠BAC-এর মান লিখি।
699. ABC একটি সমকোণী ত্রিভুজ যার \(\angle\)B সমকোণ এবং BD \(\bot\) AC; যদি AD = 4 সেমি. এবং CD = 16 সেমি. হয়, তবে BD ও AB-এর দৈর্ঘ্য হিসাব করে লিখি।
700. পাশের চিত্রে, ∠ACB = ∠BAD এবং AD \(\bot\) BC; AC = 15 সেমি., AB = 20 সেমি. এবং BC = 25 সেমি. হলে, AD-এর দৈর্ঘ্য কত তা লিখি।
701. পাশের চিত্রে, ∠ABC = 90° এবং BD \(\bot\) AC; যদি AB = 30 সেমি., BD = 24 সেমি. এবং AD = 18 সেমি. হলে, BC-এর দৈর্ঘ্য কত তা লিখি।
702. ABCD ট্রাপিজিয়ামের BC || AD এবং AD = 4 সেমি.। AC ও BD কর্ণদ্বয় এমনভাবে O বিন্দুতে ছেদ করে যে \(\frac{AO}{OC}=\frac{DO}{OB}=\frac{1}{2}\) হয়। BC-এর দৈর্ঘ্য কত তা লিখি।
703. একটি সরলরেখার উপর P এবং Q দুটি বিন্দু। P এবং Q বিন্দুতে সরলরেখাটির উপর যথাক্রমে PR এবং QS লম্ব। PS এবং QR পরস্পরকে O বিন্দুতে ছেদ করে। OT, PQ-এর উপর লম্ব। প্রমাণ করি যে, \(\frac{1}{OT}=\frac{1}{PR}+\frac{1}{QS}\)
704. যদি AP = QC, AB-এর দৈর্ঘ্য 12 একক এবং AQ-এর দৈর্ঘ্য 2 একক হয়, তবে CQ-এর দৈর্ঘ্য কত হবে, হিসাব করে লিখি।
705. PQ = 8 একক, YR = 12 একক, PY = 4 একক এবং PY-এর দৈর্ঘ্য XQ-এর দৈর্ঘ্যের চেয়ে 2 একক কম হলে, XY ও QR সমান্তরাল হবে কিনা যুক্তি দিয়ে লিখি।
706. একটি লম্ব বৃত্তাকার শঙ্কুর আয়তন V ঘন একক, ভূমিতলের ক্ষেত্রফল A বর্গ একক এবং উচ্চতা H একক হলে, \(\frac{AH}{V}\) -এর মান কত তা লিখি।
707. পাশের চিত্রে ABC ত্রিভূজটি একটি বৃত্তে পরিলিখিত এবং বৃত্তকে P,Q,R বিন্দুতে স্পর্শ করে। যদি AP=4 সেমি,BP=6 সেমি,AC=12 সেমি এবং BC=x সেমি হয়,তবে x এর মান নির্ণয় করি।
708. মাসুম O কেন্দ্রীয় একটি বৃত্ত অঙ্কন করেছে যার AB একটি জ্যা। B বিন্দুতে একটি স্পর্শক অঙ্কন করেছি যা বর্ধিত AO-কে T বিন্দুতে ছেদ করল। ∠BAT = 21° হলে, ∠BTA-এর মান হিসাব করে লিখি।
709. দুটি A ও B-এর সম্পর্কিত মানগুলি
710. x, y-এর সঙ্গে সরলভেদে এবং z-এর সঙ্গে ব্যস্ত ভেদে আছে। y=4, z=5 হলে x=3 হয়। আবার y=16, z=30 হলে, x-এর মান হিসাব করে লিখি।
711. যদি \(a ∝ b, b∝\cfrac{1}{c}\) এবং \(c ∝ d\) হয়, তবে \(a\) ও \(d\)-এর মধ্যে ভেদ সম্পর্ক লিখি।
712. y দুটি চলের সমষ্টির সমান, যার একটি x চলের সঙ্গে সরলভেদে এবং অন্যটি x চলের সঙ্গে ব্যস্তভেদে আছে। x=1 হলে y=-1 এবং x=3 হলে y=5; x ও y-এর মধ্যে সম্পর্ক নির্ণয় করি।
713. \(x\) ডেসিমিটার গভীর একটি কূপ খনন করার জন্য মোট ব্যয়ের এক অংশ \(x\)-এর সঙ্গে সরলভেদে এবং অপর অংশ \(x^2\)-এর সঙ্গে সরলভেদে পরিবর্তিত হয়। যদি 100 ডেসিমিটার এবং 200 ডেসিমিটার কূপ খনন করার জন্য যথাক্রমে 5000 টাকা এবং 12000 টাকা ব্যয় হয়, তবে 250 ডেসিমিটার গভীর কূপ খননের জন্য কত ব্যয় হবে হিসাব করে লিখি।
714. \(x ∝ y\) এবং \(y=8\) যখন \(x=2; y=16\) হলে, \(x\)-এর মান
715. \(x∝\cfrac{1}{y}\) এবং \(y∝\cfrac{1}{z}\) হলে, \(x, z\)-এর সঙ্গে সরলভেদে না ব্যস্তভেদে আছে তা নির্ণয় করি।
716. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AB ব্যাস। ABCD বৃত্তস্থ চতুর্ভুজ। ∠ADC = 120° হলে, ∠BAC-এর মান
(a) 50° (b) 60° (c) 30° (d) 40°
717. পাশের চিত্রে P ও Q কেন্দ্রবিশিষ্ট বৃত্তদুটি B ও C বিন্দুতে ছেদ করেছে। ACD একটি সরলরেখাংশ। ∠ARB = 150°, ∠BQD = x° হলে, x-এর মান নির্ণয় করি।
718. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AC ব্যাস। ∠AOB = 80° এবং ∠ACE = 10° হলে, ∠BED-এর মান নির্ণয় করি।
719. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AB বৃত্তের ব্যাস। ∠AOD = 140° এবং ∠CAB = 50° হলে, ∠BED-এর মান নির্ণয় করি।
720. যদি \(x=2, y=3\) এবং \(z=6\) হয়, তবে, \(\cfrac{3√x}{√y+√z}-\cfrac{4√y}{√z+√x}+\cfrac{√z}{√x+√y}\) -এর মান হিসাব করে লিখি ।
721. \(3x^2-5xy+3y^2\)
722. \((√7+1)\) এবং \((√5+√3)\) এর মধ্যে কোনটি বড়ো লিখি ।
723. \(x=2+√3\) হলে, \(x+\cfrac{1}{x}\) এর মান
724. যদি \(p+q=\sqrt{13}\) এবং \(p-q=\sqrt{5}\) হয়, তাহলে \(pq\) এর মান
725. \((√15+√3)\) এবং \((√10+√8)\) এর মধ্যে কোনটি বড়ো লিখি ।
726. একটি ত্রিভুজের একটি কোণের পরিমাপ \(65°\) এবং দ্বিতীয়টির পরিমাপ \(\cfrac{π}{12}\) ; তৃতীয় কোণটির ষষ্টিক ও বৃত্তীয় মান হিসাব করে লিখি।
727. দুটি কোণের সমষ্টি 135° এবং তাদের অন্তর \(\cfrac{π}{12}\) হলে, কোণ দুটির ষষ্টিক ও বৃত্তীয় মান হিসাব করে লিখি।
728. একটি ঘূর্ণায়মান রশ্মি \(-5\cfrac{1}{12}\pi \) কোণ উৎপন্ন করেছে। রশ্মিটি কোনদিকে কতবার পূর্ণ আবর্তন করেছে এবং তারপরে আরও কত ডিগ্রি কোণ উৎপন্ন করেছে তা হিসাব করে লিখি।
729. একটি কোণের ডিগ্রিতে মান \(D\) এবং ওই কোণের রেডিয়ানে মান \(R\) হলে, \(\cfrac{R}{D}\) -এর মান নির্ণয় করি।
730. \(sin(\theta-30^o)=\cfrac{1}{2}\) হলে \(cos \theta\) এর মান _____ Madhyamik 2024