\(x:a=y:b=z:c\) হলে দেখাও \(\cfrac{x^3+y^3+z^3}{a^3+b^3+c^3}\)=\(\cfrac{xyz}{abc}\)
Loading content...
ধরি, \(x:a=y:b=z:c=k\)
বা, \(\cfrac{x}{a}=\cfrac{y}{b}=\cfrac{z}{c}=k\)
\(\therefore x=ak, y=bk\) এবং \(z=ck\)
\(\therefore\) বামপক্ষ =\(\cfrac{x^3 + y^3 + z^3}{a^3+b^3+c^3}\)
\(=\cfrac{a^3k^3+b^3k^3+c^3k^3}{a^3+b^3+c^3}\)
\(=\cfrac{k^3\cancel{(a^3+b^3+c^3)}}{\cancel{(a^3+b^3+c^3)}}\)
\(=k^3\)
ডানপক্ষ=\(\cfrac{xyz}{abc}\)
=\(\cfrac{ak.bk.ck}{abc}\)
\(=k^3\)
\(\therefore\) বামপক্ষ=ডানপক্ষ (প্রমাণিত) ।