1. \(\tan^2 ∠CAD+1 = \cfrac{1}{\sin^2 ∠BAC}\)
2. tan∠ACD=cot∠ACB
3. একটি সমকোণী ত্রিভুজ ABC অঙ্কন করলাম যার ∠A সমকোণ। AB ও AC বাহুর উপর দুটি বিন্দু যথাক্রমে P ও Q নিলাম। P, Q; B, Qও C, P যুক্ত করে, প্রমাণ করি যে, BQ\(^2\) + PC\(^2\) = BC\(^2\) + PQ\(^2\)
4. কোনো বৃত্তের PQ ও RS দুটি জ্যা বৃত্তের অভ্যন্তরে X বিন্দুতে পরস্পরকে ছেদ করেছে। P, S ও R, Q যুক্ত করে, প্রমাণ করি যে, ∆PXS ও ∆RSQ সদৃশকোণী। এর থেকে প্রমাণ করি যে, PX.XQ=RX.XS অথবা একটি বৃত্তে দুটি জ্যা পরস্পরকে অন্তঃস্থভাবে ছেদ করলে একটির অংশদ্বয়ের আয়তক্ষেত্র অপরটির অংশদ্বয়ের আয়তক্ষেত্রের সমান হবে।