\(3x^2+8x+2=0\) সমীকরণের বীজদ্বয় \(α\) এবং \(β\) হলে, \(\left(\cfrac{1}{α}+\cfrac{1}{β}\right)\) এর মান (a) \(-\cfrac{3}{8}\) (b) \(\cfrac{2}{3}\) (c) -4 (d) 4

Answer: C
\(\alpha + \beta = -\cfrac{8}{3}\) এবং \(\alpha\beta=\cfrac{2}{3}\)

\(\therefore \cfrac{1}{\alpha}+\cfrac{1}{\beta}\)
= \(\cfrac{\beta+\alpha}{\alpha\beta}\)
=\(\cfrac{-\cfrac{8}{3}}{\cfrac{2}{3}}\)
=\(-\cfrac{8}{3}\times \cfrac{3}{2}=-4\)

Similar Questions