\(sec^2 θ+tan^2 θ = \cfrac{13}{12}\) হলে, \(sec^4 θ- tan^4 θ\)-এর মান হিসাব করে লিখি।
\(sec^4θ-tan^4θ \)
\(=(sec^2θ )^2-(tan^2θ )^2 \)
\(=(sec^2θ+tan^2θ )(sec^2θ-tan^2θ ) \)
\(=\cfrac{13}{12}×1 [∵sec^2θ-tan^2θ=1] \)
\(=\cfrac{13}{12} \) (Answer)