1. একচলবিশিষ্ট একটি দ্বিঘাত সমীকরণের বীজদ্বয় 2 এবং 7 হলে সমীকরণটি নির্ণয় করো।
2. একটি দ্বিঘাত সমীকরণের বীজদ্বয়ের সমষ্টি 14 এবং গুণফল 24 হলে, দ্বিঘাত সমীকরণটি গঠন করো।
3. \(x^2-x=k(2x-1)\) দ্বিঘাত সমীকরণের বীজদ্বয়ের সাংখ্যমান সমান কিন্তু বিপরীত চিহ্নবিশিষ্ট হলে, \(k\)-এর মান নির্ণয় করো।
4. কোনো দ্বিঘাত সমীকরণের বীজদ্বয় 2, -3 হলে, সমীকরণটি লেখো । Madhyamik 2018
5. \(5x^2−2x+3=0\) দ্বিঘাত সমীকরণের বীজদুটি \(α\) ও \(β\) হলে \(\cfrac{1}{α}+\cfrac{1}{β}\) এর মান নির্ণয় করো । Madhyamik 2020
6. \(x^2-22x+105=0\) সমীকরণের বীজদ্বয় α ও β হলে α-β এর মান নির্ণয় করো।
7. \(5x^2+2x+3=0\) দ্বিঘাত সমীকরণের বীজদ্বয় \(\alpha\) ও \(\beta\) হলে \(\cfrac{\alpha^2}{\beta}+\cfrac{\beta^2}{\alpha}\) এর মান নির্ণয় করাে।
8. \(7x^2+5x-4=0\) দ্বিঘাত সমীকরণের বীজদ্বয় \(\alpha\) ও \(\beta\) হলে \(\cfrac{\alpha^2}{\beta}+\cfrac{\beta^2}{\alpha}\) এর মান নির্ণয় করাে।
9. \(5x^2+2x-3=0\) দ্বিঘাত সমীকরণের বীজদ্বয় \(\alpha\) ও \(\beta\) হলে \(\cfrac{\alpha^2}{\beta}+\cfrac{\beta^2}{\alpha}\) এর মান নির্ণয় করাে।
10. যদি \(\alpha\) ও \(\beta\) , \(ax^2+bx+c=0\) সমীকরণের দুটি বীজ হয়, তাহলে \(\cfrac{\alpha}{\beta}\) ও \(\cfrac{\beta}{\alpha}\) সেই সমীকরণের দুটি বীজ, সেই দ্বিঘাত সমীকরণটি নির্ণয় করাে।
11. একটি দ্বিঘাত সমীকরণের বীজদ্বয় \((-5), (-7)\) হলে, সমীকরণটি নির্ণয় করাে।
12. \(ax^2+bx+35=0\) সমীকরণের বীজদ্বয় (–5) ও (−7) হলে, \(a\) এবং \(b\) এর মান নির্ণয় করো।
13. \(x^2-x=k(2x-1)\) সমীকরণের বীজদ্বয়ের সমষ্টি শূন্য হলে, \(k\)-এর মান নির্ণয় করো।
14. \(x^2-x=k(2x-1)\) সমীকরণের বীজদ্বয়ের সমষ্টি 2 হলে, K-এর মান নির্ণয় করো। Madhyamik 2023
15. \(5x^2-3x+6=0\) সমীকরণটির বীজদ্বয় \(\alpha\) এবং \(\beta\) হলে \(\left(\cfrac{1}{\alpha}+\cfrac{1}{\beta} \right)\) এর মান নির্ণয় করো।
16. \( b^3+a^2c+ac^2=3abc\) হলে \(ax^2+bx+c=0 (a\ne b)\) সমীকরণের বীজদ্বয়ের মধ্যে সম্পর্ক নির্ণয় করো।
17. 11, 12, 14, x - 2, x + 4, x + 9, 32, 38, 47 রাশিগুলি ঊর্ধ্বক্রমানুসারে সাজানো এবং তাদের মধ্যমা 24 হলে, x -এর মান নির্ণয় করো । Madhyamik 2017
18. দুটি ক্রমিক ধনাত্মক অযুগ্ম সংখ্যার গুণফল 143 হলে সমীকরণটি গঠন করো এবং শ্রীধর আচার্যের সূত্র প্রয়োগ করে সংখ্যাটি দুটি নির্ণয় করো । Madhyamik 2020
19. \(x^2-3x+5=0\) সমীকরণের বীজদ্বয় \(\alpha\) ও \(\beta\) হলে \((\alpha+\beta)\left(\cfrac{1}{\alpha^2}+\cfrac{1}{\beta^2}\right)\) এর মান নির্ণয় করাে।
20. \(2(a^2+b^2) x+2(a+b) x+1=0\) দ্বিঘাত সমীকরণের বীজদ্বয় সমান হলে, প্রমাণ করাে যে, \(a = b\)।
21. \((b-c)x^2+(c-a)x+(a-b)=0\) দ্বিঘাত সমীকরণের বীজদ্বয় সমান হলে। প্রমাণ করাে \(2b = a+c\)
22. \(3x^2+8x+2=0\) সমীকরণের বীজদ্বয় \(\alpha\) এবং \(\beta\) হলে \(\cfrac{1}{\alpha^2}+\cfrac{1}{\beta^2}\) এর মান নির্ণয় করাে।
23. \(4x^2+4(3m+1)x+(m-7)-20=0\) দ্বিঘাত সমীকরণটির বীজ দুটি পরস্পর অনোন্যক হলে \(m\) -এর মান নির্ণয় করাে।
24. \(3x^2-10x+3=0\) দ্বিঘাত সমীকরণের একটি বীজ \(\cfrac{1}{3}\) হয়, তবে অপর বীজটি নির্ণয় করো।
25. 11, 12, 14, x-2, x+4, x+9, 32, 38, 47 রাশিগুলি ঊর্ধ্বক্রমানুসারে সাজানো এবং তাদের মধ্যমা 24 হলে, x এর মান নির্ণয় করো।
26. \(ax^2+bx+c=0 \) সমীকরণের বীজদ্বয় \(\alpha\)ও \(\beta\) হলে\(\cfrac{a\alpha^2}{b\alpha+c}-\cfrac{a\beta^2}{b\beta+c}\) নির্ণয় করো।
27. বছরের প্রথমে রাবেয়া ও মেঘা যথাক্রমে 24,000 টাকা ও 30,000 টাকা নিয়ে ব্যবসা শুরু করেন। পাঁচমাস পর রাবেয়া আরও 4,000 টাকা মূলধন দেন। বছরের শেষে 27,716 টাকা লাভ হলে, কে কত টাকা লভ্যাংশ পাবেন তা নির্ণয় করো।
28. \(a:b:c = 2:3:5\) হলে \(\cfrac{2a + 3b- 3c}{c}\) এর মান নির্ণয় করো।
(a) \(=-\cfrac{2}{5}\) (b) \(=-\cfrac{3}{5}\) (c) \(=\cfrac{2}{5}\) (d) \(=\cfrac{3}{5}\)
29. \(x = 3+2√2\) হলে, \(\left(√x + \cfrac{1}{√x}\right)\) এর মান নির্ণয় করো।
30. ∆ABC এর ∠B = 90°, AC = √13 সেমি এবং AB+BC= 5 সেমি হলে (cos A+cos C) এর মান নির্ণয় করো।