1. একটি নির্দিষ্ট বিন্দুকে কেন্দ্র করে একটিই বৃত্ত আঁকা সম্ভব ।
2. ABCD চতুর্ভুজের A বিন্দুকে কেন্দ্র করে একটি বৃত্ত অঙ্কন করা হলো যেটি B, Cও D বিন্দু দিয়ে যায়।প্রমাণ করি যে, \(\angle\)CBD + \(\angle\)CDB =\(\cfrac{1}{2}\angle\)BAD
3. 3 সেমি. দৈর্ঘ্যের ব্যাসার্ধবিশিষ্ট AB একটি সরলরেখাংশ অঙ্কন করে A বিন্দুকে কেন্দ্র করে AB দৈর্ঘ্যের ব্যাসার্ধ নিয়ে একটি বৃত্ত অঙ্কন করি এবং B বিন্দুতে ওই বৃত্তের স্পর্শক অঙ্কন করি।
4. AB একটি সরলরেখাংশের উপর O একটি বিন্দু এবং O বিন্দুতে AB-এর উপর PQ একটি লম্ব অঙ্কন করি। A এবং B বিন্দুকে কেন্দ্র করে যথাক্রমে AO এবং BO দৈর্ঘ্যের ব্যাসার্ধ নিয়ে দুটি বৃত্ত অঙ্কন করি এবং এই বৃত্তদুটির সাপেক্ষে PQ-কে কী বলা হয় লিখি। P বিন্দু থেকে বৃত্ত দুটির অপর স্পর্শক দুটি অঙ্কন করি।
5. A ও B কেন্দ্রবিশিষ্ট দুটি নির্দিষ্ট বৃত্ত পরস্পরকে অন্তঃস্পর্শ করেছে। অপর একটি বৃত্ত, বৃহত্তর বৃত্তটিকে X বিন্দুতে অন্তঃস্পর্শ এবং ক্ষুদ্রতর বৃত্তটিকে Y বিন্দুতে বহিঃস্পর্শ করেছে। O যদি ওই বৃত্তের কেন্দ্র হয়, তবে প্রমাণ করি যে, AO + BO ধ্রুবক হবে।
6. \(4\sqrt2\) মিটার দৈর্ঘ্যের একটি জ্যা কোনো বৃত্তের কেন্দ্রে সমকোণ উৎপন্ন করেছে। বৃত্তের ব্যাসার্ধ কত ?
(a) \(4\sqrt2\) মিটার (b) \(8\) মিটার (c) \(4\) মিটার (d) \(8\sqrt2\) মিটার
7. দুটি বৃত্ত পরস্পরকে বহিঃথভাবে স্পর্শ করে। তাদের কেন্দ্রদ্বয়ের দূরত্ব 7 সেমি.। একটি বৃত্তের ব্যাসার্ধ 4 সেমি. হলে অপর বৃত্তের ব্যাসার্ধ হয়
(a) 5 সেমি. (b) 4 সেমি. (c) 3 সেমি. (d) 2 সেমি.
8. একটি বৃত্তে পরিধির উপর দুটি বিন্দু A ও B বিন্দুতে স্পর্শক দুটি পরস্পর C বিন্দুতে ছেদ করে। যদি পরিধির উপর অপর একটি বিন্দু P এমন যা কেন্দ্রের যে দিকে C অবস্থিত তার বিপরীত দিকে অবস্থিত। যদি \(\angle\)APB = 35° হয়, তবে \(\angle\)ACB-এর মান কত?
(a) 145° (b) 55° (c) 110° (d) কোনোটিই নয়
9. \(4\sqrt2\) মিটার দৈর্ঘ্যের একটি জ্যা কোনাে বৃত্তের কেন্দ্রে সমকোণ উৎপন্ন করেছে। বৃত্তের ব্যাসার্ধ কত?
(a) \(4\sqrt2\) মিটার (b) \(2\sqrt2\) মিটার (c) \(2\) মিটার (d) \(4\) মিটার
10. O কেন্দ্রীয় বৃত্তের AB একটি জ্যা। B বিন্দুতে অঙ্কিত স্পর্শক বর্ধিত AO কে T বিন্দুতে ছেদ করেছে। ∠BAT = 21° হলে, ∠BTA= কত?
11. O কেন্দ্রীয় বৃত্তের AB একটি ব্যাস। CD জ্যা এর দৈর্ঘ্য ব্যাসার্ধের দৈর্ঘ্যের সমান। AC ও BD কে বর্ধিত করায় P বিন্দুতে ছেদ করে। ∠APB= কত?
12. একটি সরলরেখা দুটি এককেন্দ্রীয় বৃত্তের একটিকে A ও B বিন্দুতে এবং অপরটিকে C ও D বিন্দুতে ছেদ করেছে । প্রমাণ করো, AC = BD । Madhyamik 2018 , 2011
13. একটি রশ্মির প্রান্তবিন্দুকে কেন্দ্র করে, রশ্মিটিকে ঘড়ির কাঁটার বিপরীত দিকে ঘোরার জন্য উৎপন্ন কোণটি ধনাত্মক হবে । Madhyamik 2020
14. O কেন্দ্রীয় একটি বৃত্তের ব্যাসার্ধের দৈর্ঘ্য 5 সেমি এবং AB একটি একটি জ্যা এর দৈর্ঘ্য 8 সেমি । O বিন্দু থেকে AB জ্যা এর দূরত্ব হিসাব করে লিখি । Madhyamik 2016
15. প্রমাণ করাে যে, পরস্পর স্পর্শ করে এমন তিনটি সমান বৃত্তের কেন্দ্রদ্বয় একটি সমবাহু ত্রিভূজের শীর্ষবিন্দু । Madhyamik 2007
16. O কেন্দ্রীয় বৃত্তের AB একটি জ্যা। O থেকে AB জ্যা-এর উপর OP লম্ব। বর্ধিত OP বৃত্তটিকে C বিন্দুতে ছেদ করে। যদি AB=6cm, PC=1 সেমি হয়, তবে বৃত্তটির ব্যাসার্ধ কত?
17. O কেন্দ্রীয় একটি বৃত্তের দুটি জ্যা AB ও CD পরস্পরকে P বিন্দুতে ছেদ করে। প্রমাণ কর যে, \(\angle\)AOD+\(\angle\)BOC=2\(\angle\)BPC
18. O কেন্দ্র বিশিষ্ট বৃত্তের উপর A বিন্দুতে AT একটি স্পর্শক। BC ব্যাসের বর্ধিতাংশ স্পর্শককে T বিন্দুতে ছেদ করে। \(\angle\)ABC=25° হলে \(\angle\)ATB এর মান কত?
19. P ও Q কেন্দ্রীয় দুটি বৃত্ত পরস্পরকে A বিন্দুতে বহিঃস্পর্শ করেছে। বৃত্ত দুটির একটি সরল সাধারন স্পর্শক বৃত্ত দুটিকে যথাক্রমে R ও S বিন্দুতে স্পর্শ করেছে । প্রমান করো, \(\angle\)RAS=90°
20. O কেন্দ্রীয় একটি বৃত্তের দুটি জ্যা AB ও CD পরস্পরকে অন্তঃস্থভাবে P বিন্দুতে ছেদ করেছে। প্রমাণ করো যে, \(\angle\)AOD+\(\angle\)BOC =2\(\angle\)BPC
21. ABCD একটি বৃত্তস্থ চতুর্ভুজ। \(\angle\)DAB এবং \(\angle\)BCD এর সমদ্বিখন্ডকদ্বয় বৃত্তকে যথাক্রমে X ও Y বিন্দুতে ছেদ করেছে। O বৃত্তটির কেন্দ্র হলে \(\angle\)XOY এর মান নির্ণয় করো। Madhyamik 2023
22. O কেন্দ্রীয় একটি বৃত্তের ব্যাসার্ধের দৈর্ঘ্য 5 সেমি এবং AB একটি একটি জ্যা এর দৈর্ঘ্য 8 সেমি । O বিন্দু থেকে AB জ্যা এর দূরত্ব হিসাব করে লিখি ।
23. O কেন্দ্রীয় একটি বৃত্তের ব্যাসের দৈর্ঘ্য 26 সেমি । O বিন্দু থেকে PQ জ্যা এর দুরত্ব 5 সেমি। PQ জ্যা এর দৈর্ঘ্য হিসাব করে লিখি ।
24. O কেন্দ্রীয় একটি বৃত্তের PQ জ্যা এর দৈর্ঘ্য 4 সেমি এবং O বিন্দু থেকে PQ এর দূরত্ব 2.1 সেমি । বৃত্তের ব্যাসের দৈর্ঘ্য হিসাব করে লিখি ।
25. যদি কোনো বৃত্তের একটি জ্যা এর দৈর্ঘ্য 48 সেমি এবং কেন্দ্র থেকে ওই জ্যা এর দূরত্ব 7 সেমি হয়, তবে ওই বৃত্তের কেন্দ্র থেকে যে জ্যা-এর দূরত্ব 20 সেমি সেই জ্যা এর দৈর্ঘ্য কত হবে তা হিসাব করে লিখি ।
26. একটি সরলরেখা দুটি এককেন্দ্রীয় বৃত্তের একটিকে A ও B বিন্দুতে এবং অপরটিকে C ও D বিন্দুতে ছেদ করেছে। যুক্তি দিয়ে প্রমান করি যে AC=DB
27. দুটি সমকেন্দ্রীয় বৃত্তের কেন্দ্র O; একটি সরলরেখা একটি বৃত্তকে A ও B বিন্দুতে এবং অপর বৃত্তকে C ও D বিন্দুতে ছেদ করে। AC=5 সেমি হলে BD-এর দৈর্ঘ্য
(a) 2.5 সেমি (b) 5 সেমি (c) 10 সেমি (d) কোনোটিই নয়
28. নিয়ামত একটি বৃত্ত এঁকেছে যার ব্যাসার্ধের দৈর্ঘ্য 13 সেমি.। আমি এই বৃত্তে একটি 10 সেমি. দৈর্ঘ্যের জ্যা AB এঁকেছি। বৃত্তের কেন্দ্র থেকে এই AB জ্যা-এর দুরত্ব হিসাব করে লিখি।
29. একটি সমবাহু ত্রিভুজ যার প্রতিটি বাহুর দৈর্ঘ্য 6 সেমি.।
30. একটি সমকোণী ত্রিভুজ যার সমকোণ সংলগ্ন বাহুদুটির দৈর্ঘ্য 4 সেমি. ও ৪ সেমি.।
31. একটি সমকোণী ত্রিভুজ যার অতিভুজের দৈর্ঘ্য 12 সেমি. এবং অপর একটি বাহুর দৈর্ঘ্য 5 সেমি.।
32. একটি ত্রিভুজ আঁকি যার একটি বাহুর দৈর্ঘ্য 6.7 সেমি. এবং বাহুসংলগ্ন কোণ দুটির পরিমাণ 75° ও 55°.
33. ABC একটি ত্রিভুজ যার ভূমি BC = 5 সেমি., ∠ABC = 100° এবং AB = 4 সেমি.
34. একটি আয়তক্ষেত্র PQRS অঙ্কন করি যার PQ= 4 সেমি. এবং QR = 6 সেমি.। আয়তক্ষেত্রের কর্ণদুটি অঙ্কন করি এবং অঙ্কন না করে ∆PQR-এর পরিকেন্দ্র কোথায় হবে এবং পরিব্যাসার্ধের দৈর্ঘ্য কত হবে হিসাব করে লিখি। ∆PQR-এর পরিবৃত্ত অঙ্কন করে যাচাই করি।
35. O কেন্দ্রীয় বৃত্তের ABCD একটি বৃত্তস্থ চতুর্ভুজ। DC বাহুকে P বিন্দু পর্যন্ত বর্ধিতকরা হলো। \(\angle\)BCP = 108° হলে, \(\angle\)BOD-এর মান হিসাব করে লিখি।
36. পাশের ছবির মতো C ও D কেন্দ্রবিশিষ্ট দুটি বৃত্ত অঙ্কন করেছি যারা।পরস্পরকে A ও B বিন্দুতে ছেদ করেছে। A বিন্দুগামী একটি সরলরেখা PK অঙ্কন করেছি যা C কেন্দ্রীয় বৃত্তকে P বিন্দুতে এবং D কেন্দ্রীয় বৃত্তকে Q বিন্দুতে ছেদ করেছে। প্রমাণ করি যে, (i) \(\angle\)PBQ= \(\angle\)CAD (ii) \(\angle\)BPC= \(\angle\)BQD
37. দুটি সমান বৃত্ত একটি অপরটির কেন্দ্রগামী এবং বৃত্তদুটি পরস্পরকে A ও B বিন্দুতে ছেদ করেছে।A বিন্দুগামী সরলরেখা বৃত্ত দুটিকে C ও D বিন্দুতে ছেদ করলে, প্রমাণ করি যে, ΔBCD সমবাহু ত্রিভুজ।
38. O কেন্দ্রীয় একটি বৃত্তের দুটি জ্যা AB ও CD পরস্পরকে P বিন্দুতে ছেদ করেছে। প্রমাণ করি যে,\(\angle\)AOD + \(\angle\)BOC = 2\(\angle\)BPC যদি \(\angle\)AOD ও \(\angle\)BOC পরস্পর সম্পূরক হয়, তাহলে প্রমাণ করি যে, জ্যা দুটি পরস্পর লম্ব।
39. ABC ত্রিভুজাকার ক্ষেত্রের ভিতর O বিন্দু এমনভাবে অবস্থিত যে OA = OB এবং \(\angle\)AOB = 2\(\angle\)ACB. O বিন্দুকে কেন্দ্র করে OA দৈর্ঘ্যের ব্যাসার্ধ নিয়ে বৃত্ত অঙ্কন করলে C বিন্দু বৃত্তের উপর অবস্থিত হবে।
40. O কেন্দ্রীয় বৃত্তে OA ব্যাসার্ধ এবং AQ একটি জ্যা। বৃত্তের উপর C একটি বিন্দু। O, A, C বিন্দুগামী বৃত্ত AQ জ্যা-কে P বিন্দুতে ছেদ করে। প্রমাণ করি যে, CP = PQ
41. প্রমাণ করি, একটি রম্বসের বাহুগুলিকে ব্যাস করে বৃত্ত অঙ্কন করলে বৃত্তগুলি একটি নির্দিষ্ট বিন্দু দিয়ে যায়।
42. আমি একটি O কেন্দ্রীয় বৃত্ত এঁকেছি যার ব্যাসার্ধের দৈর্ঘ্য 6 সেমি.। কেন্দ্র O থেকে 10 সেমি, | দূরত্বে অবস্থিত P বিন্দু থেকে PT স্পর্শক আঁকলাম। হিসাব করে PT স্পর্শকের দৈর্ঘ্য লিখি।
43. আমি যদি এমন একটি O কেন্দ্রীয় বৃত্ত আঁকি যার কেন্দ্র থেকে 26 সেমি. দূরত্বে অবস্থিত P বিন্দু থেকে অঙ্কিত বৃত্তের স্পর্শকের দৈর্ঘ্য 10 সেমি. হবে, তবে বৃত্তের ব্যাসার্ধের দৈর্ঘ্য কী হবে হিসাব করে লিখি।
44. একটি বৃত্ত অঙ্কন করেছি যার ব্যাস AB এবং কেন্দ্র O; বৃত্তের উপরিস্থিত কোনাে বিন্দু P থেকে AB ব্যাসের উপর একটি লম্ব অঙ্কন করলাম যা AB কে N বিন্দুতে ছেদ করল। প্রমাণ করি যে, PB\(^2\)= AB.BN
45. tan ∠ABC=cot ∠ACO
46. \(\sin^2\)∠BCO+\(\sin^2\)∠ACO=1
47. cosec\(^2\)∠CAB-1=tan\(^2\)∠ABC
48. O কেন্দ্রবিশিষ্ট একটি বৃত্তের AB একটি ব্যাস। P বৃত্তের উপর যে-কোনো একটি বিন্দু। A ও B বিন্দুতে অঙ্কিত স্পর্শক দুটিকে P বিন্দুতে অঙ্কিত স্পর্শকটি যথাক্রমে Q ও R বিন্দুতে ছেদ করেছে। যদি বৃত্তের ব্যাসার্ধ r হয়, প্রমাণ করি যে, PQ.PR = r\(^2\)
49. BD\(^2\)=AD.DC
50. যে-কোনো সরলরেখার জন্য AC এবং AD দ্বারা গঠিত আয়তক্ষেত্রের ক্ষেত্রফল সর্বদা সমান।
51. O কেন্দ্রীয় বৃত্তের উপর P একটি বিন্দু। P বিন্দুতে বৃত্তের স্পর্শক অঙ্কন করি এবং ওই স্পর্শক থেকে বৃত্তের ব্যাসার্ধের দৈর্ঘ্যের সমান করে PQ অংশ কেটে নিই। Q বিন্দু থেকে বৃত্তের অপর স্পর্শক QR অঙ্কন করি এবং চাদার সাহায্যে ∠PQR পরিমাপ করে তার মান লিখি।
52. 16 সেমি. দৈর্ঘ্যের ব্যাসবিশিষ্ট একটি বৃত্তের কেন্দ্র থেকে 17 সেমি. দূরত্বে অবস্থিত বহিঃস্থ একটি বিন্দু থেকে অঙ্কিত বৃত্তের স্পর্শকের দৈর্ঘ্য হিসাব করে লিখি।
53. O কেন্দ্রীয় বৃত্তের বহিঃস্থ বিন্দু A থেকে অঙ্কিত দুটি স্পর্শক AP ও AQ বৃত্তকে P ও Q বিন্দুতে স্পর্শ করে। PR একটি ব্যাস হলে, প্রমাণ করি যে, OA || RQ
54. A ও B কেন্দ্রীয় দুটি বৃত্ত অঙ্কন করেছি যারা পরস্পরকে C বিন্দুতে বহিঃস্পর্শ করেছে। C বিন্দুতে অঙ্কিত স্পর্শকের উপর O একটি বিন্দু এবং OD ও OE যথাক্রমে A ও B কেন্দ্রীয় বৃত্তকে যথাক্রমে D ও E বিন্দুতে স্পর্শ করেছে । ∠COD = 56°, ∠COE = 40°, ∠ACD = x° এবং ∠BCE = y° হলে প্রমাণ করি যে OD = OC = OE এবং x-y = ৪
55. A ও B কেন্দ্রীয় দুটি বৃত্ত অঙ্কন করেছি যারা পরস্পরকে O বিন্দুতে বহিঃস্পর্শ করেছে। O বিন্দু দিয়ে একটি সরলরেখা অঙ্কন করেছি যা বৃত্ত দুটিকে যথাক্রমে P ও Q বিন্দুতে ছেদ করেছে। প্রমাণ করি যে, AP || BQ.
56. তিনটি সমান বৃত্ত পরস্পরকে বহিঃস্পর্শ করেছে। প্রমাণ করি যে, ওই বৃত্ত তিনটির কেন্দ্রগুলি একটি সমবাহু ত্রিভুজের শীর্ষবিন্দু।
57. পাশের চিত্রে O কেন্দ্রবিশিষ্ট বৃত্তে বহিঃস্থ বিন্দু C থেকে অঙ্কিত দুটি স্পর্শক বৃত্তকে যথাক্রমে P ও Q বিন্দুতে স্পর্শ করেছে। বৃত্তের অপর একটি বিন্দু R তে অঙ্কিত স্পর্শক CP ও CQ কে যথাক্রমে A ও B বিন্দুতে ছেদ করে। যদি,CP=11 সেমি এবং BC =7 সেমি হয়,তাহলে BR এর দৈর্ঘ্য নির্ণয় করি ।
58. মাসুম O কেন্দ্রীয় একটি বৃত্ত অঙ্কন করেছে যার AB একটি জ্যা। B বিন্দুতে একটি স্পর্শক অঙ্কন করেছি যা বর্ধিত AO-কে T বিন্দুতে ছেদ করল। ∠BAT = 21° হলে, ∠BTA-এর মান হিসাব করে লিখি।
59. একটি O কেন্দ্রীয় বৃত্ত অঙ্কন করি যার দুটি ব্যাসার্ধ OA ও OB পরস্পর লম্বভাবে অবস্থিত। A ও B বিন্দুতে অঙ্কিত স্পর্শকদ্বয় পরস্পরকে T বিন্দুতে ছেদ করলে, প্রমাণ করি যে, AB = OT এবং তারা পরস্পরকে লম্বভাবে সমদ্বিখণ্ডিত করে।
60. O কেন্দ্রীয় কোনো বৃত্তের উপর অবস্থিত A বিন্দুতে স্পর্শকের উপর X যে-কোনো একটি বিন্দু। X বিন্দু থেকে অঙ্কিত একটি ছেদক বৃত্তকে Y ও Z বিন্দুতে ছেদ করে। YZ-এর মধ্যবিন্দু P হলে, প্রমাণ করি যে, XAPO বা XAOP একটি বৃত্তস্থ চতুর্ভুজ।
61. O কেন্দ্রীয় কোনো বৃত্তের একটি ব্যাসের উপর P যে-কোনো একটি বিন্দু। ওই ব্যাসের উপর O বিন্দুতে অঙ্কিত লম্ব বৃত্তকে Q বিন্দুতে ছেদ করে। বর্ধিত QP বৃত্তকে R বিন্দুতে ছেদ করে। R বিন্দুতে অঙ্কিত স্পর্শক বর্ধিত OP-কে S বিন্দুতে ছেদ করে। প্রমাণ করি যে, SP=SR.
62. রুমেলা O কেন্দ্রীয় একটি বৃত্ত অঙ্কন করেছে যার QR একটি জ্যা। Q ও R বিন্দুতে দুটি স্পর্শক অঙ্কন করেছি যারা পরস্পরকে P বিন্দুতে ছেদ করেছে। QM বৃত্তের একটি ব্যাস হলে, প্রমাণ করি যে, ∠QPR = 2∠RQM.
63. দুটি বৃত্তের একটি অপরটির কেন্দ্র O বিন্দুগামী এবং বৃত্ত দুটি পরস্পরকে A ও B বিন্দুতে ছেদ করেছে। A বিন্দুগামী একটি সরলরেখা O বিন্দুগামী বৃত্তকে P বিন্দুতে এবং O কেন্দ্রীয় বৃত্তকে R বিন্দুতে ছেদ করেছে। P, B ও R, B যুক্ত করে, প্রমাণ করি যে PR = PB
64. পাশের চিত্রে P ও Q কেন্দ্রবিশিষ্ট বৃত্তদুটি B ও C বিন্দুতে ছেদ করেছে। ACD একটি সরলরেখাংশ। ∠ARB = 150°, ∠BQD = x° হলে, x-এর মান নির্ণয় করি।
65. একটি বৃত্তের ব্যাসার্ধের দৈর্ঘ্য 28 সেমি.। এই বৃত্তে 5.5 সেমি. দৈর্ঘ্যের বৃত্তচাপ দ্বারা ধৃত কেন্দ্রীয় কোণটির বৃত্তীয় মান হিসাব করে লিখি।
66. একটি বৃত্তের অসমান দৈর্ঘ্যের দুটি চাপ কেন্দ্রে যে কোণ ধারণ করে আছে তার অনুপাত 5:2 এবং দ্বিতীয় কোণটির ষষ্টিক মান 30° হলে, প্রথম কোণটির ষষ্টিক মান ও বৃত্তীয় মান হিসাব করে লিখি।
67. একটি রশ্মির প্রান্তবিন্দুকে কেন্দ্র করে রশ্মিটির ঘড়ির কাঁটার দিকে দু-বার পূর্ণ আবর্তনের জন্য 720° কোণ উৎপন্ন হয়।