সমাধান করো: \(\cfrac{x-3}{x+3}-\cfrac{x+3}{x-3}+6\cfrac{6}{7}=0\) \((x\ne-3,3)\) Madhyamik 1995 , 2023


\(\cfrac{x-3}{x+3}-\cfrac{x+3}{x-3}+6\cfrac{6}{7}=0\)
বা, \(\cfrac{(x-3)^2-(x+3)^2}{(x+3)(x-3)}=-6\cfrac{6}{7}\)
বা, \(\cfrac{(x^2-6x+9)-(x^2+6x+9)}{(x^2-9)}=-\cfrac{48}{7}\)
বা, \(\cfrac{x^2-6x+9-x^2-6x-9)}{x^2-9}=-\cfrac{48}{7}\)
বা, \(\cfrac{-12x}{x^2-9}=-\cfrac{48}{7}\)
বা, \(\cfrac{x}{x^2-9}=\cfrac{4}{7}\)
বা, \(4x^2-36=7x\)
বা, \(4x^2-7x-36=0\)
বা, \(4x^2-(16-9)x-36=0\)
বা, \(4x^2-16x+9x-36=0\)
বা, \(4x(x-4)+9(x-4)=0\)
বা, \((x-4)(4x+9)=0\)

\(\therefore\) হয়, \((x-4)=0\) অর্থাৎ, \(x=4\)
নয়, \((4x+9)=0\) বা, \(4x=-9\) বা, \(x=-\cfrac{9}{4}\)
\(\therefore\) নির্ণেয় সমাধান \(x=4\) অথবা \(x=-\cfrac{9}{4}\) (Answer)

Similar Questions