দেখাও যে, \(\cfrac{tan \theta+ sec \theta -1}{tan \theta - sec\theta +1}=\cfrac{1+sin \theta}{cos\theta}\)
\(\cfrac{tan\theta+sec\theta-1}{tan\theta-sec\theta+1}\)
\(=\cfrac{sec\theta+tan\theta-(sec^2\theta-tan^2\theta)}{tan\theta-sec\theta+1}\)
\(=\cfrac{(sec\theta+tan\theta)(1-sec\theta+tan\theta)}{(tan\theta-sec\theta+1)}\)
\(=sec\theta+tan\theta\)
\(=\cfrac{1}{cos\theta}+\cfrac{sin\theta}{cos\theta}\)
\(=\cfrac{1+sin\theta}{cos\theta}\) [প্রমাণিত]