যদি \(\cfrac{sin θ}{x}=\cfrac{cos θ}{y}\) হয়, তাহলে দেখাই যে, \(sin θ-cos θ = \cfrac{x-y}{\sqrt{x^2+y^2}}\)
\(\cfrac{sinθ}{x}=\cfrac{cosθ}{y}\)
বা, \(\cfrac{sinθ}{cosθ}=\cfrac{x}{y}\)
বা, \(tanθ=\cfrac{x}{y}\)
বা, \(tan^2θ=\cfrac{x^2}{y^2}\)
বা, \(1+ tan^2θ=1+\cfrac{x^2}{y^2}\)
বা, \(sec^2θ=\cfrac{y^2+x^2}{y^2}\)
বা, \(secθ=\cfrac{\sqrt{y^2+x^2}}{y}\)
বা, \(cosθ=\cfrac{y}{\sqrt{x^2+y^2}} \)
এখন \(\cfrac{sinθ}{x}=\cfrac{cosθ}{y}\) সমীকরনে
\(cosθ=\cfrac{y}{\sqrt{x^2+y^2}} \) বসিয়ে পাই
\(\cfrac{sinθ}{x}=\cfrac{\cfrac{y}{\sqrt{x^2+y^2}}}{y}\)
বা, \(\cfrac{sinθ}{x}=\cfrac{1}{\sqrt{x^2+y^2}}\)
বা, \(sinθ=\cfrac{x}{\sqrt{x^2+y^2}}\)
\(\therefore sinθ−cosθ=\cfrac{x}{\sqrt{x^2+y^2}}-\cfrac{y}{\sqrt{x^2+y^2}}\)
\(=\cfrac{x−y}{\sqrt{x^2+y^2}}\)(প্রমাণিত)