\( sec^2\) 60°- \(cot^2\) 30°-\(\cfrac{2tan30^\circ . cosec60^\circ}{1+tan^2 30^\circ} \) এর মান নির্ণয় করো।
Loading content...

\( sec^2 60°- cot^2 30°-\cfrac{2tan30° . cosec60°}{1+tan30°} \)
\(= sec^2 60°- cot^2(90°-60°)-\cfrac{2\cfrac{1}{\sqrt3}\times \cfrac{2}{\sqrt3}}{1+\left(\cfrac{1}{\sqrt3}\right)^2} \)
\(= sec^2 60°- tan^2 60°-\cfrac{\cfrac{4}{3}}{1+\cfrac{1}{3}} \)
\(= 1-\cfrac{\cfrac{4}{3}}{\cfrac{3+1}{3}} \)
\(= 1-\cfrac{\cfrac{4}{3}}{\cfrac{4}{3}} \)
\(= 1-1 \)
\(=0 \) [Answer]

Similar Questions