1. তিনটি অসমরেখ বিন্দু দিয়ে একটি মাত্র বৃত্ত আঁকা যায় । Madhyamik 2019
2. তিনটি অসমরেখ বিন্দু দিয়ে একটিমাত্র বৃত্ত আঁকা যায়।
3. তিনটি বিন্দু দিয়ে একটি মাত্র বৃত্ত অঙ্কন করা যায়।
4. তিনটি সমরেখ বিন্দু দিয়ে একটি মাত্র বৃত্ত অঙ্কন করা যায়।
5. তিনটি অসমরেখ বিন্দু দিয়ে একটি মাত্র বৃত্ত অঙ্কন সম্ভব।
6. তিনটি সমরেখ বিন্দু দিয়ে একটি বৃত্ত অঙ্কন করা যায়।
7. তিনটি বিন্দু একই সরলরেখায় অবস্থিত নয়, এরূপ বিন্দু তিনটি দিয়ে ______ বৃত্ত অঙ্কন করা যায়।
8. দুটি বিন্দু দিয়ে কেবলমাত্র 1টি বৃত্ত আঁকা সম্ভব।
9. কোনো বহিস্থ বিন্দু থেকে বৃত্তের ওপর কেবলমাত্র একটি স্পর্শক টানা যায় । Madhyamik 2023
10. ABCD চতুর্ভুজের A বিন্দুকে কেন্দ্র করে একটি বৃত্ত অঙ্কন করা হলো যেটি B, Cও D বিন্দু দিয়ে যায়।প্রমাণ করি যে, \(\angle\)CBD + \(\angle\)CDB =\(\cfrac{1}{2}\angle\)BAD
11. প্রমাণ করি, একটি রম্বসের বাহুগুলিকে ব্যাস করে বৃত্ত অঙ্কন করলে বৃত্তগুলি একটি নির্দিষ্ট বিন্দু দিয়ে যায়।
12. দুটি বৃত্ত পরস্পরকে A ও B বিন্দুতে ছেদ করে এবং এদের প্রত্যেকটির পরিধি অপরটির কেন্দ্র দিয়ে যায়। A দিয়ে অঙ্কিত কোনো সরলরেখা যদি বৃত্তদ্বয়কে C ও D বিন্দুতে ছেদ করে তবে BCD ত্রিভুজটি কী ধরনের হবে?
(a) সমকোণী সমদ্বিবাহু (b) বিষমবাহু (c) সমদ্বিবাহু (d) সমবাহু
13. POR একটি ত্রিভুজ। PQ-এর মধ্যবিন্দু X দিয়ে আঁকা QR বাহুর সমান্তরাল সরলরেখা PR বাহুকে Y বিন্দুতে ছেদ করে । প্রমাণ করাে Y বিন্দুটি PR-এর মধ্যবিন্দু । Madhyamik 2013
14. প্রমাণ করাে যে, পরস্পর স্পর্শ করে এমন তিনটি সমান বৃত্তের কেন্দ্রদ্বয় একটি সমবাহু ত্রিভূজের শীর্ষবিন্দু । Madhyamik 2007
15. O কেন্দ্রীয় বৃত্তের ওপরে P, Q এবং R বিন্দু তিনটি এমন ভাবে অবস্থিত যে PORQ একটি সামান্তরিক হয়। \(\angle\)POR এর মান নির্ণয় করাে।
16. 9 মিটার উচ্চতা বিশিষ্ট একটি লম্ব বৃত্তাকার চোঙাকৃতি ট্যাঙ্ক জলপূর্ণ আছে। 6 সেমি দৈর্ঘ্যের ব্যাসের একটি পাইপ দিয়ে মিনিটে 225 মিটার বেগে জল বের হয়,তা হলে 36 মিনিটে ট্যাঙ্কটির সমস্ত জল বেরিয়ে যায়। ট্যাঙ্কটির ব্যাসের দৈর্ঘ্য নির্ণয় করো।
17. 5 মিটার উচ্চতাবিশিষ্ট একটি লম্ববৃত্তাকার চোঙাকৃতি ট্যাঙ্ক জল পূর্ণ আছে। 8 সেমি দৈর্ঘ্যের ব্যাসের একটি পাইপ দিয়ে যদি মিনিটে 225 মিটার বেগে জল বের করা হয়, তাহলে 45 মিনিটে ট্যাঙ্কটির সমস্ত জল বেরিয়ে যায়। ট্যাঙ্কটি ব্যাসের দৈর্ঘ্য নির্ণয় করাে।
18. O কেন্দ্রীয় বৃত্তের উপর A, B, C তিনটি বিন্দু এমনভাবে অবস্থিত যে AOCB একটি সামান্তরিক। \(\angle\)AOC কত?
19. সমরেখ নয় এরূপ 3টি বিন্দু দিয়ে _____ বৃত্ত অঙ্কন করা যায়।
20. 10.5 মিটার লম্বা একটি লম্ববৃত্তাকার জলের ট্যাঙ্কের সঙ্গে 7 সেমি ব্যাসের একটি পাইপ লাগানাে আছে। পাইপটি দিয়ে যদি মিনিটে 210 মিটার বেগে জল বের করা যায়, তবে ট্যাঙ্কটি 45 মিনিটে খালি হয়, ট্যাঙ্কটির ব্যাসার্ধ কত?
21. বৃত্তের বহিঃস্থ কোনো বিন্দু থেকে ওই বৃত্তে কোনো স্পর্শক আঁকা যায় না।
22. একটি নির্দিষ্ট বিন্দুকে কেন্দ্র করে একটিই বৃত্ত আঁকা সম্ভব ।
23. তিনটি সমরেখ বিন্দু দিয়ে যায় এরকম একটি বৃত্ত অঙ্কন করা যায় ।
24. O কেন্দ্রীয় বৃত্তের উপর A, B, C তিনটি বিন্দু এমনভাবে অবস্থিত যে AOCB একটি সামান্তরিক। \(\angle\)AOC-এর মান নির্ণয় করি।
25. তিমির দুটি বৃত্ত এঁকেছে যারা পরস্পরকে P ও Q বিন্দুতে ছেদ করেছে। P বিন্দু দিয়ে দুটি সরলরেখা টানলাম যারা একটি বৃত্তকে A, B বিন্দুতে এবং অপর বৃত্তকে যথাক্রমে C, D বিন্দুতে ছেদ করল। প্রমাণ করি যে \(\angle\)AQC = \(\angle\)BQD
26. রজত একটি সরলরেখাংশ PQ অঙ্কন করেছে যার মধ্যবিন্দু R এবং সে PR ও PQ-কে ব্যাস করে দুটি বৃত্ত অঙ্কন করেছে। আমি P বিন্দুগামী একটি সরলরেখা অঙ্কন করেছি যা প্রথম বৃত্তকে S বিন্দুতে এবং দ্বিতীয় বৃত্তকে T বিন্দুতে ছেদ করেছে। যুক্তি দিয়ে প্রমাণ করি যে PS = ST
27. একটি বৃত্তের উপর তিনটি বিন্দু P, Qও R অবস্থিত। PQও PR-এর উপর P বিন্দুতে অঙ্কিত লম্ব দুটি বৃত্তকে যথাক্রমে S ও T বিন্দুতে ছেদ করেছে। প্রমাণ করি যে, RQ = ST
28. যুক্তি দিয়ে প্রমাণ করি যে একটি বিষমবাহু ত্রিভুজের বৃহত্তম বাহু অপেক্ষা ক্ষুদ্রতর দুটি বাহুকে ব্যাস করে অঙ্কিত বৃত্ত দুটির ছেদবিন্দু তৃতীয় বাহুর উপর অবস্থিত হবে।
29. 5 মিটার উচ্চতাবিশিষ্ট একটি লম্ববৃত্তাকার চোঙাকৃতি ট্যাঙ্ক জলপূর্ণ আছে। | 8 সেমি. দৈর্ঘ্যের ব্যাসের একটি পাইপ দিয়ে যদি মিনিটে 225 মিটার বেগে জল বের করা হয়, তাহলে 45 মিনিটে ট্যাঙ্কটির সমস্ত জল বেরিয়ে যায়। ট্যাঙ্কটির ব্যাসের দৈর্ঘ্য হিসাব করে লিখি।
30. BD\(^2\)=AD.DC
31. যে-কোনো সরলরেখার জন্য AC এবং AD দ্বারা গঠিত আয়তক্ষেত্রের ক্ষেত্রফল সর্বদা সমান।
32. A ও B কেন্দ্রীয় দুটি বৃত্ত অঙ্কন করেছি যারা পরস্পরকে O বিন্দুতে বহিঃস্পর্শ করেছে। O বিন্দু দিয়ে একটি সরলরেখা অঙ্কন করেছি যা বৃত্ত দুটিকে যথাক্রমে P ও Q বিন্দুতে ছেদ করেছে। প্রমাণ করি যে, AP || BQ.
33. তিনটি সমান বৃত্ত পরস্পরকে বহিঃস্পর্শ করেছে। প্রমাণ করি যে, ওই বৃত্ত তিনটির কেন্দ্রগুলি একটি সমবাহু ত্রিভুজের শীর্ষবিন্দু।
34. মোহিত একটি বৃত্তের বহিঃস্থ কোনো বিন্দু দিয়ে দুটি সরলরেখা অঙ্কন করেছে যারা বৃত্তটিকে যথাক্রমে A, B বিন্দু ও C, D বিন্দুতে ছেদ করেছে। যুক্তি দিয়ে প্রমাণ করি যে, ∆XAC ও ∆XBD-এর দুটি করে কোণ সমান।
35. একটি বৃত্তে একটি নির্দিষ্ট সরলরেখার সমান্তরাল তিনটি স্পর্শক অঙ্কন করা যায়।
36. একটি সমকোণী ত্রিভুজের অতিভূজকে ব্যাস করে বৃত্ত অঙ্কন করলে বৃত্তটি সমকৌণিক বিন্দু দিয়ে যাবে।