1. \(x=3+2\sqrt2\) হলে, \(x+\cfrac{1}{x}\) এর মান লিখি ।
2. \(x=3+2√2\) হলে, \(x+\cfrac{1}{x}\) -এর মান নির্ণয় করো।
3. \(ax^2+bx+35=0\) সমীকরণের বীজদ্বয় -5 ও -7 হলে, \(a\) এবং \(b\) এর মান লিখি।
4. \(ax^2+bx+35=0\) সমীকরণের বীজদ্বয় -5 ও -7 হলে, \(a\) এবং \(b\) এর মান লিখি।
5. \(kx^2+2x+3k=0(k≠0)\)সমীকরণের বীজদ্বয়ের সমষ্টি এবং গুণফল সমান হলে, \(k\) এর মান লিখি ।
6. \(x^2-22x+105=0\) সমীকরণের বীজদ্বয় \(α\) এবং \(β\) হলে, \((α-β)\) এর মান লিখি ।
7. \(x^2-x=k(2x-1)\)সমীকরণের বীজদ্বয়ের সমষ্টি শূন্য হলে, \(k\) এর মান লিখি ।
8. \(x^2+bx+12=0\) এবং \(x^2+bx+q=0\) সমীকরণদ্বয়ের একটি বীজ \(2\) হলে, \(q\) এর মান লিখি ।
9. \(x=\cfrac{8ab}{a+b}\) হলে, \(\left(\cfrac{x+4a}{x-4a}+\cfrac{x+4b}{x-4b}\right)\) এর মান হিসাব করে লিখি।
10. একটি লম্ব বৃত্তাকার চোঙের বক্রতলের ক্ষেত্রফল \(c\) বর্গ একক, ভূমির ব্যাসার্ধের দৈর্ঘ্য \(r\) একক এবং আয়তন \(v\) ঘন একক হলে, \(\cfrac{cr}{v}\) এর মান কত তা লিখি ।
11. একটি নিরেট গোলকের বক্রতলের ক্ষেত্রফল \(=S\) এবং আয়তন \(=V\) হলে,\( S^3/V^2\) এর মান কত তা লিখি ।\( (π \)এর মান না বসিয়ে)
12. O কেন্দ্রীয় বৃত্তের ABCD একটি বৃত্তস্থ চতুর্ভুজ। DC বাহুকে P বিন্দু পর্যন্ত বর্ধিতকরা হলো। \(\angle\)BCP = 108° হলে, \(\angle\)BOD-এর মান হিসাব করে লিখি।
13. √5 এর করণী নিরসক উৎপাদক √x হলে, x-এর ক্ষুদ্রতম মান কত হবে তা হিসাব করে লিখি । [যেখানে x একটি পূর্ণসংখ্যা ]
14. \((√5+√3)(√5-√3)=25-x^2\) একটি সমীকরণ হলে,\(x\) –এর মান হিসাব করে লিখি ।
15. পাশের বৃত্তস্থ চতুর্ভুজ ABCD-এর AD ও AB বাহুকে যথাক্রমে E ও F বিন্দু পর্যন্ত বর্ধিত করলাম। \(\angle\)CBF = 120° হলে, \(\angle\)CDE -এর মান হিসাব করে লিখি।
16. ABCD বৃত্তস্থ চতুর্ভুজের AB ও DCবাহকে বর্ধিত করায় P বিন্দুতে এবং AD ও BC বাহুকে বর্ধিত করায় Q বিন্দুতে মিলিত হয়েছে। \(\angle\)ADC = 85° এবং \(\angle\)BPC = 40° হলে, \(\angle\)BAD ও \(\angle\)CQD-এর মান হিসাব করে লিখি।
17. y, x -এর বর্গের সঙ্গে সরলভেদে আছে এবং y = 9 যখন x = 9; y-কে x দ্বারা প্রকাশ করি এবং y = 4 হলে, x-এর মান হিসাব করে লিখি।
18. ABC ত্রিভুজের BC বাহুর সমান্তরাল সরলরেখা AB ও AC-কে যথাক্রমে D ও E বিন্দুতে ছেদ। করেছে। AE = 2AD হলে, DB : EC-এর মান হিসাব করে লিখি।
19. \(\sin θ=\cfrac{4}{5}\) হলে, \(\cfrac{ cosecθ}{1+\cot θ}\) -এর মান নির্ণয় করে লিখি।
20. cosecθ- cotθ= √2 - 1 হলে, (cosecθ+ cotθ) -এর মান হিসাব করে লিখি।
21. sinθcosθ=\(\cfrac{1}{2}\) হলে, (sinθ+ cosθ) -এর মান হিসাব করে লিখি।
22. \(\cfrac{sinθ+cosθ}{sinθ-cosθ}=7\) হলে, tanθ-এর মান হিসাব করে লিখি।
23. \(\cfrac{cosecθ+sinθ}{cosecθ-sinθ}=\cfrac{5}{2}\) হলে, sinθ-এর মান হিসাব করে লিখি।
24. \(secθ+cosθ=\cfrac{5}{2}\) হলে, (secθ- cosθ) -এর মান হিসাব করে লিখি।
25. \(tan^2 θ+cot^2 θ= \cfrac{10}{3}\) হলে, tanθ + cotθ এবং tanθ- cotθ-এর মান নির্ণয় করি এবং সেখান থেকে tanθ-এর মান হিসাব করে লিখি।
26. \(sec^2 θ+tan^2 θ = \cfrac{13}{12}\) হলে, \(sec^4 θ- tan^4 θ\)-এর মান হিসাব করে লিখি।
27. ABC সমকোণী ত্রিভুজের ∠B সমকোণ। AB = 8√3 সেমি. এবং BC = 8 সেমি. হলে, ∠ACB ও ∠BAC-এর মান হিসাব করে লিখি।
28. \(x tan 30° + y cot 60° = 0\) এবং \(2x –y tan 45° = 1\) হলে, \(x\) ও \(y\)-এর মান হিসাব করে লিখি।
29. PB = AQ, AP= 9 একক, QC = 4 একক হলে, PB-এর দৈর্ঘ্য হিসাব করে লিখি।
30. PB-এর দৈর্ঘ্য AP-এর দৈর্ঘ্যের দ্বিগুণ এবং QC-এর দৈর্ঘ্য AQ-এর দৈর্ঘ্যের চেয়ে 3 একক বেশি হলে, AC-এর দৈর্ঘ্য কত হবে, হিসাব করে লিখি।
31. PX = 2 একক, XQ = 3.5 একক, YR = 7 একক এবং PY = 4.25 একক হলে, XY ও QR পরস্পর সমান্তরাল হবে কিনা যুক্তি দিয়ে লিখি।
32. PQ = 8 একক, YR = 12 একক, PY = 4 একক এবং PY-এর দৈর্ঘ্য XQ-এর দৈর্ঘ্যের চেয়ে 2 একক কম হলে, XY ও QR সমান্তরাল হবে কিনা যুক্তি দিয়ে লিখি।
33. একটি লম্ব বৃত্তাকার শঙ্কুর আয়তন V ঘন একক, ভূমিতলের ক্ষেত্রফল A বর্গ একক এবং উচ্চতা H একক হলে, \(\frac{AH}{V}\) -এর মান কত তা লিখি।
34. একটি লম্ব বৃত্তাকার শঙ্কুর আয়তন এবং পার্শ্বতলের ক্ষেত্রফলের সাংখ্যমান সমান। শঙ্কুটির উচ্চতা এবং ব্যাসার্ধের দৈর্ঘ্য যথাক্রমে h একক এবং r একক হলে, \(\frac{1}{h^2} +\frac{1}{r^2}\) -এর মান কত তা লিখি।
35. মাসুম O কেন্দ্রীয় একটি বৃত্ত অঙ্কন করেছে যার AB একটি জ্যা। B বিন্দুতে একটি স্পর্শক অঙ্কন করেছি যা বর্ধিত AO-কে T বিন্দুতে ছেদ করল। ∠BAT = 21° হলে, ∠BTA-এর মান হিসাব করে লিখি।
36. x, y-এর সঙ্গে সরলভেদে এবং z-এর সঙ্গে ব্যস্ত ভেদে আছে। y=4, z=5 হলে x=3 হয়। আবার y=16, z=30 হলে, x-এর মান হিসাব করে লিখি।
37. x, y-এর সঙ্গে সরলভেদে এবং z-এর সঙ্গে ব্যস্তভেদে আছে। y=5 ও z=9 হলে x= \(\frac{1}{6}\) হয়। x, y ও z-এর মধ্যে সম্পর্ক নির্ণয় করি এবং y=6 ও z= \(\frac{1}{5}\) হলে, x-এর মান হিসাব করে লিখি।
38. সরল করি: \(\cfrac{x+\sqrt{x^2-1}}{x-\sqrt{x^2-1}}+\cfrac{x-\sqrt{x^2-1}}{x+\sqrt{x^2-1}}\) সরলফল 14 হলে, \(x\) এর মান কী কী হবে হিসাব করে লিখি ।
39. O কেন্দ্রীয় বৃত্তের AB এবং CD দুটি সমান দৈর্ঘ্যের জ্যা। CD এর মধ্যবিন্দু E. \(\angle\)AOB=70° হলে, \(\angle\)COE এর মান
(a) 70° (b) 110° (c) 35° (d) 55°
40. O কেন্দ্রীয় বৃত্তের AB ও CD জ্যা দু’টির দৈর্ঘ্য সমান। \(\angle\)AOB=60° হলে, \(\angle\)COD এর মান
(a) 60° (b) 30° (c) 120° (d) 90°
41. \(\triangle\)ABC এর BC বাহুর সমান্তরাল সরলরেখা AB ও AC বাহুকে যথাক্রমে P ও Q বিন্দুতে ছেদ করে। AP:PB=2:1 এবং AC=18 সেমি হলে, AQ=কত?
(a) 12 সেমি (b) 9 সেমি (c) 6 সেমি (d) কোনটিই নয়।
42. \(\triangle\) ABC এর BC বাহুর সমান্তরাল সরলরেখা AB ও AC বাহুকে যথাক্রমে P ও Q বিন্দুতে ছেদ করে। AP=18 সেমি QC=9 সেমি এবং AQ=2PB হলে, PB=কত ?
(a) 6 সেমি (b) 12 সেমি (c) 18 সেমি (d) 9 সেমি
43. ABCD ট্রাপিজিয়ামের AD\(\parallel\)BC । BC এর সমান্তরাল একটি সরলরেখা AB ও DC কে যথাক্রমে P ও Q বিন্দুতে ছেদ করেছে । AP:PB=2:1 হলে, DQ:QC= কত?
(a) 1:1 (b) 1:2 (c) 1:4 (d) 2:1
44. \(\triangle\)ABC এর BC বাহুর সমান্তরাল সরলরেখা AB ও AC বাহুকে যথাক্রমে D ও E বিন্দুতে ছেদ করে । AB=20 সেমি, BD=14 সেমি হলে, DE:BC=কত?
(a) 7:10 (b) 5:17 (c) 3:10 (d) 7:17
45. একটি বৃত্তের AB ব্যাস এবং PQ এমন একটি জ্যা যা AB এর ওপর লম্বভাবে O বিন্দুতে দন্ডায়মান । OA=8 সেমি OB=2 সেমি, OP=4 সেমি হলে, OQ=কত?
(a) 6 সেমি (b) 4 সেমি (c) 5 সেমি (d) কোনোটিই নয়
46. \(9x^2-13x+9=0\) হলে, \(x+\cfrac{1}{x}\) এর মান কত?
(a) \(\cfrac{9}{4}\) (b) \(\cfrac{4}{9}\) (c) \(\cfrac{13}{9}\) (d) 1
47. XYZ সমবাহু ত্রিভুজটি একটি বৃত্তে অন্তর্লিখিত। বৃত্তের কেন্দ্র O হলে \(\angle\)YOZ -এর মান কত?
(a) 60° (b) 30° (c) 90° (d) 120°
48. \(x=3+\sqrt8\) এবং \(y=3-\sqrt8\) হলে, \(x^{-3}+y^{-3}\) এর মান নির্ণয় কর ।
(a) 199 (b) 195 (c) 198 (d) 201
49. \(x = 3+2√2\) হলে, \(\left(√x + \cfrac{1}{√x}\right)\) এর মান নির্ণয় করো।
50. \(see5A = cosec (A+36°)\) এবং \(5A\) ধনাত্মক সূক্ষ্মকোণ হলে, \(A\)-এর মান নির্ণয় করো।
51. একটি গোলকের উপরিতলের ক্ষেত্রফল \(A\) ও আয়তন \(V\) হলে, \(\cfrac{A^3}{V^2}\) এর মান নির্ণয় করো।
52. ABCD বৃত্তস্থ চতুর্ভুজের AB ও DC বাহুকে বর্ধিত করায় P বিন্দুতে এবং AD ও BC বাহুকে বর্ধিত করায় Q বিন্দুতে মিলিত হয়। \(\angle\)ADC=85° এবং \(\angle\)BPC=40° হলে, \(\angle\)BAD ও \(\angle\)CQD-এর মান নির্ণয় করো।
53. \(cos^2θ-sin^2θ=\cfrac{1}{2}\) হলে, \(cos^4θ-sin^4θ\)-এর মান ––।
54. একটি লম্ব বৃত্তাকার শঙ্কুর আয়তন V ঘন একক। ভূমি তলের ক্ষেত্রফল A বর্গএকক এবং উচ্চতা H একক হলে, \(\frac{AH}{V}\) এর মান নির্ণয় করো। Madhyamik 2023
55. একটি লম্ববৃত্তাকার শঙ্কুর আয়তন এবং পার্শ্বতলের ক্ষেত্রফলের সাংখ্যমান সমান। শঙ্কুটির উচ্চতা এবং ব্যাসার্ধের দৈর্ঘ্য যথাক্রমে \(h\) একক এবং \(r\) একক হলে, \(\left(\cfrac{1}{h^2} +\cfrac{1}{r^2}\right)\) এর মান নির্ণয় করো।
56. নীচের পরিসংখ্যা বিভাজনের যৌগিক গড় 50 এবং মোট পরিসংখ্যা 120 হলে, \(f_1\) ও \(f_2\) এর মান নির্ণয় কর ।
57. \(x=2+\sqrt3\) হলে, \(x+\cfrac{1}{x}\) -এর মান হবে \(2\sqrt3\) Madhyamik 2017
58. △ABC -এর AB = \((2a - 1)\) সেমি, AC = \(2\sqrt{2a}\) সেমি এবং BC = \((2a +1)\) সেমি হলে, ∠BAC -এর মান লেখো । Madhyamik 2017
59. \( tan (θ + 15°) = √3\) হলে, \(sinθ + cosθ\) -এর মান নির্ণয় করো । Madhyamik 2017
60. 11, 12, 14, x - 2, x + 4, x + 9, 32, 38, 47 রাশিগুলি ঊর্ধ্বক্রমানুসারে সাজানো এবং তাদের মধ্যমা 24 হলে, x -এর মান নির্ণয় করো । Madhyamik 2017
61. \(tan 35° tan 55° = sin θ\) হলে, \(θ\) -এর সর্বনিম্ন ধনাত্মক মান —— হবে । Madhyamik 2018
62. \(sin10θ=cos8θ\) এবং \(10θ\) ধনাত্মক সূক্ষ্মকোণ হলে, \(tan9θ\)-এর মান নির্ণয় করো । Madhyamik 2019
63. প্রথম \((2n + 1)\) সংখ্যক ক্রমিক স্বাভাবিক সংখ্যার মধ্যবর্তী সংখ্যা \(\cfrac{n+103}{3}\)হলে, \(n\) -এর মান নির্ণয় করো । Madhyamik 2019
64. \(\alpha\) ও \(\beta\) পরস্পর পূরক কোণ হলে, \((1 -\sin^2\alpha)\) \((1 - \cos^2\alpha)\) \((1 + \cot^2 \beta)\) \((1 + \tan^2\beta)\)-এর মান নির্ণয় করাে। Madhyamik 2016
65. \(\cos\alpha =\sin\beta\) এবং \(\alpha , \beta\) উভয়ের সূক্ষকোণ হলে, \(\sin (\alpha+\beta)\) -এর মান নির্ণয় কর । Madhyamik 2014
66. \(x\sin 60° \cos^2 30°=\cfrac{\tan^2 45° \sec 60°}{cosec 60°}\) হলে, \(x\) এর মান নির্ণয় করো । Madhyamik 2012 , 2009
67. প্রমান করো যে, ব্যাস নয় এরূপ কোনো জ্যা-এর উপর বৃত্তের কেন্দ্র থেকে লম্ব অঙ্কন করা হলে, ঐ লম্ব জ্যা-কে সমদ্বিখন্ডিত করবে । Madhyamik 2006 , 2022
68. \(\cfrac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=3\) হলে, \(\sin^4 \theta-\cos^4\theta\)-এর মান নির্ণয় করো । Madhyamik 2006
69. \(x=\cfrac{\sqrt7+\sqrt3}{\sqrt7-\sqrt3}\) এবং \(xy=1\) হলে, \(\cfrac{x^2+3xy+y^2}{x^2-3xy+y^2}\) -এর মান নির্ণয় কর। Madhyamik 2004
70. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AB বৃত্তের ব্যাস। \(\angle\)AOD=140° এবং \(\angle\)CAB=50° হলে, \(\angle\)BED-এর মান নির্ণয় করাে।
71. \(\cfrac{a}{2} = \cfrac{b}{3} = \cfrac{c}{4} = \cfrac{2a-3b+4c}{p}\) হলে, \(p\) এর মান নির্ণয় করো।
72. \(0°< θ< 90°\) হলে, \((4cosec^2 θ+9 sin^2θ)\) এর সর্বনিম্ন মান নির্ণয় করো।
73. \(x=\sqrt{\cfrac{\sqrt{5}+1}{\sqrt{5}-1}}\) হলে, \(x^2-x-1\) -এর মান নির্ণয় করো।
74. \(cos43° =\cfrac{x}{\sqrt{x^2+y^2}}\) হলে, \(tan47°\)-এর মান নির্ণয় করো।
75. \(cos\theta=\cfrac{p}{\sqrt{p^2+q^2}}\)- হলে, \(tan\theta\)-এর মান নির্ণয় করাে।
(a) \(\cfrac{q}{p}\) (b) \(\cfrac{p}{q}\) (c) \(\cfrac{\sqrt{p}}{q}\) (d) কোনােটাই নয়
76. \(p : q = 5 : 7\) এবং \(p - q = -4\) হলে, \(3p - 4q\) এর মান নির্ণয় কর।
77. ABC ত্রিভুজের পরিকেন্দ্র O এবং D বিন্দু BC বাহুর মধ্যবিন্দু। \(\angle\)BAC = 40° হলে, \(\angle\)BOD-এর মান নির্ণয় কর ।
78. O কেন্দ্রীয় বৃত্তে ABC ত্রিভুজটি অন্তর্লিখিত। যদি \(\angle\)BAC=85° এবং \(\angle\)BCA=75° হয়, তাহলে \(\angle\)AOC-এর মান নির্ণয় করাে।
79. একটি বর্গাকার ভূমিবিশিষ্ট পিতলের প্লেটের দৈর্ঘ্য \(x\) সেমি, বেধ 1 মিলিমি এবং প্লেটটির ওজন 4725 গ্রাম। যদি 1 ঘনসেমি পিতলের ওজন 8.4 গ্রাম হয় তাহলে \(x\)-এর মান কত হবে তা হিসাব করে লিখি ।
80. \(k\) এর মান কত হলে \(9x^2+3kx+4=0\) দ্বিঘাত সমীকরণের বীজদ্বয় বাস্তব ও সমান হবে লিখি ।
81. যদি \(x=2, y=3\) এবং \(z=6\) হয়, তবে, \(\cfrac{3√x}{√y+√z}-\cfrac{4√y}{√z+√x}+\cfrac{√z}{√x+√y}\) -এর মান হিসাব করে লিখি ।
82. O কেন্দ্রীয় বৃত্তের AB ও CD জ্যা দু’টির দৈর্ঘ্য সমান। \(\angle\)AOB=60° হলে, \(\angle\)COD এর মান
83. x, y-এর সঙ্গে সরলভেদে এবং z-এর সঙ্গে ব্যস্ত ভেদে আছে। y=4. z=5 হলে x=3 হয়। y=16, z=30 হলে, x-এর মান নির্ণয় কর?
84. একটি মােবাইল সেটের মূল্য প্রতিবছর 5% হারে হ্রাস পায়। মােবাইল সেটটির বর্তমান মূল্য 16,400 টাকা হলে, 2 বছর পরে এর মূল্য হবে-
(a) 15,801 টাকা (b) 14,801 টাকা (c) 13,401 টাকা (d) 12,801 টাকা
85. একটি ব্যাবসায় A মূলধনের \(\cfrac{1}{3}\) অংশ বিনিয়ােগ করে। B, A ও C-এর মােট বিনিয়ােগের সমান নিয়ােজিত করে। 1 বছর পরে 72,000 টাকা লাভ হলে, C কত টাকা পাবে?
(a) 11,000 টাকা (b) 10,000 টাকা (c) 12,000 টাকা (d) 13,000 টাকা
86. \(3x^2 + \sqrt2x + a = 0\) সমীকরণের একটি বীজ \(\sqrt2\) হলে, \(a\)-এর মান নির্ণয় করাে।
(a) 7 (b) -8 (c) 9 (d) 8
87. ABC ত্রিভূজের পরিকেন্দ্র O এবং \(\angle\)OAB=50° হলে, \(\angle\)ACB এর মান হবে _____।
88. \(\triangle\)ABC-এর বাহুগুলির লম্বসমদ্বিখণ্ডকত্রয় পরস্পর O বিন্দুতে ছেদ করেছে। \(\angle\)OAB=50° হলে, \(\angle\)ACB -এর মান
(a) 50° (b) 100° (c) 40° (d) 180°
89. দুটি সমান জ্যা-এর দৈর্ঘ্য _____ সেমি. এবং তাদের মধ্যে দূরত্ব ৪ সেমি হলে, বৃত্তটির ব্যাস হবে 10 সেমি।
90. একটি আয়তঘনের তল সংখ্যা \(x\) ধার সংখ্যা \(y\) শীর্ষবিন্দুর সংখ্যা \(z\) এবং কর্ণের সংখ্যা \(p\) হলে \(x+y+z+p\) -এর মান কত তা লিখি।
91. ABCD একটি বৃত্তস্থ চতুর্ভুজ। AD ও AB বাহুকে যথাক্রমে E ও F পর্যন্ত বাড়ানাে হল। \(\angle\)CBF=120° হলে, \(\angle\)CDE এর মান কত?
92. O কেন্দ্রীয় বৃত্তের AOB ব্যাস। \(\angle\)BCE=20°, \(\angle\)CAE=25° হলে, \(\angle\)AEC-এর মান নির্ণয় করাে-
(a) 50° (b) 90° (c) 45° (d) 20°
93. O কেন্দ্রীয় বত্তের AC ব্যাস এবং DC||EB, \(\angle\)AOB=80° এবং \(\angle\)ACE=10° হলে, \(\angle\)BEDএর মান নির্ণয় করাে।
94. O কেন্দ্রীয় বৃত্তের AB ব্যাস। ABCD বৃত্তস্থ চতুর্ভূজ । \(\angle\)ABC=65°, \(\angle\)DAC=60° হলে, \(\angle\)BCD এর মান কত?
95. ABCD একটি বৃত্তস্থ চতুভুজ। \(\angle\)A:\(\angle\)B:\(\angle\)C=3:4:5 হলে, \(\angle\)A:\(\angle\)D-এর মান -
(a) 3:6 (b) 3:4 (c) 5:6 (d) 3:5
96. \(x=\sqrt5+2\) হলে, \(x^3-\cfrac{1}{x^3}\)-এর মান নির্ণয় করাে।
97. ABCD বৃত্তস্থ চতুর্ভুজের AB ও DC বাহুকে বর্ধিত করায় P বিন্দুতে এবং AD ও BC বাহুকে বর্ধিত করায় Q বিন্দুতে মিলিত হয়। \(\angle\)ADC=85° এবং \(\angle\)BPC=40° হলে, \(\angle\)CQD এর মান কত?
98. \(x=\cfrac{2\sqrt{15}}{\sqrt5+\sqrt3}\) হলে, \(\cfrac{x+\sqrt3}{x-\sqrt3}+\cfrac{x+\sqrt5}{x-\sqrt5}\) এর মান নির্ণয় করাে।
99. দুটি সমকোণী চৌপলের বাহুগুলির দৈর্ঘ্য যথাক্রমে ৪ সেমি, 12 সেমি, 15 সেমি, 6, (2h-1) সেমি 16 সেমি। সমকোণী চৌপল দুটির আয়তন সমান হলে, h এর মান নির্ণয় করাে।
100. O কেন্দ্রীয় বৃত্তের AB ব্যাস। M পরিধিস্থ একটি বিন্দু। \(\angle\)MAB=72° হলে, \(\angle\)MBA এর মান
(a) 72° (b) 18° (c) 108° (d) কোনােটিই নয়
101. \(\cfrac{a}{2}=\cfrac{b}{3}=\cfrac{c}{4}=\cfrac{2a-3b+4c}{p}\) হলে, \(p\) -এর মান নির্ণয় করাে।
102. পাশের চিত্রে, LM || AB এবং AL= (x-3) একক, AC = 2x একক, BM = (x-2) একক এবং BC= (2x + 3) একক হলে, x-এর মান নির্ণয় করাে।
103. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AB ব্যাস । \(\angle\)ADC=120° হলে, \(\angle\)BAC-এর মান
(a) 50° (b) 60° (c) 40° (d) 30°
104. \(x:y =3:4\) হলে, \((3y-x) : (2x+y)\)-এর মান নির্ণয় করাে।
105. \(x^2-x=k(2x-1)\) সমীকরণের বীজদ্বয়ের সমষ্টি শূন্য হলে, \(k\)-এর মান নির্ণয় করো।
106. 11, 12, 14, x-2, x+4, x+9, 32, 38, 47 রাশিগুলি ঊর্ধ্বক্রমানুসারে সাজানো এবং তাদের মধ্যমা 24 হলে, x এর মান নির্ণয় করো।
107. একটি নিরেট গোলকের বক্রতলের ক্ষেত্রফল এবং এর আয়তনের 3 গুণ সাংখ্যমানে সমান হলে, গোলকটির ব্যাস _____ একক ।
108. \(x^2-x=k(2x-1)\) দ্বিঘাত সমীকরণের বীজদ্বয়ের সাংখ্যমান সমান কিন্তু বিপরীত চিহ্নবিশিষ্ট হলে, \(k\)-এর মান নির্ণয় করো।
109. একটি লম্ব বৃত্তাকার শঙ্কুর আয়তন V ঘন একক। ভূমি তলের ক্ষেত্রফল A বর্গএকক এবং উচ্চতা H একক হলে, \(\frac{AH}{V}\) এর মান নির্ণয় করো।
110. \(\cfrac{a}{1-a}+\cfrac{b}{1-b}+\cfrac{c}{1-c} = 1\) হলে, \(\cfrac{1}{1-a}+\cfrac{1}{1-b}+\cfrac{1}{1-c}\) এর মান নির্ণয় করো। Madhyamik 2022
111. \((a^2bc)\) এবং \((4bc)\) এর মধ্য সমানুপাতী \(x\) হলে, \(x\) এর মান ______ । Madhyamik 2023
112. \(\tan \theta \cos 60°=\cfrac{{\sqrt3}}{2}\) হলে, \(\sin (\theta-15°)\) এর মান হবে _____ । Madhyamik 2023
113. \(x^2-x=k(2x-1)\) সমীকরণের বীজদ্বয়ের সমষ্টি 2 হলে, K-এর মান নির্ণয় করো। Madhyamik 2023
114. \(tan 2A = cot (A - 30° )\) হলে, \(sec ( A \) \(+ 20°)\) এর মান নির্ণয় করো। Madhyamik 2023
115. \(k\) -এর কোন মানের জন্য \(7x^2+kx-3=0\) দ্বিঘাত সমীকরণের একটি বীজ \(\cfrac{2}{3}\) হবে হিসাব করে লিখি ।
116. \(k\) -এর কোন মানের জন্য \(x^2+3ax+k=0\) দ্বিঘাত সমীকরণের একটি বীজ \(-a\) হবে হিসাব করে লিখি ।
117. \(x^2-(2+b)x+6=0\) সমীকরণের একটি বীজ 2 হলে, অপর বীজটির মান লিখি।
118. \(2x^2+kx+4=0\) সমীকরণের একটি বীজ \(2\) হলে, অপর বীজটির মান লিখি।
119. \(5x^2+2x-7=0\) এই সমীকরণে শ্রীধর আচার্যের সূত্র প্রয়োগ করে \(x=\cfrac{k±12}{10}\) পাওয়া গেলে \(k\) এর মান কী হবে হিসাব করে লিখি ।
120. \(m\) এর মান কত হলে, \(4x^2+4(3m-1)x+(m+7)=0\) দ্বিঘাত সমীকরণের বীজ দুটি পরস্পর অন্যোন্যক হবে ।
121. \(α^2+β^2\)
122. \(α^3+β^3\)
123. \(\cfrac{1}{α}+\cfrac{1}{β}\)
124. \(\cfrac{α^2}{β}+\cfrac{β^2}{α}\)
125. \(k\) এর মান কত হলে \(x^2+kx+3=0\) দ্বিঘাত সমীকরনের একটি বীজ \(1\) হবে হিসাব করে লিখি ।
126. \(k\) এর মান কত হলে \(9x^2+3kx+4=0\) দ্বিঘাত সমীকরণের বীজদ্বয় বাস্তব ও সমান হবে লিখি ।
127. যদি \(5x^2+13x+k=0\) দ্বিঘাত সমীকরণের বীজদ্বয় একটি অপরটির অনোন্যক হয়, তবে, \(k\)-এর মান হিসাব করে লিখি ।
128. O কেন্দ্রীয় বৃত্তের AB ও CD দুটি সমান দৈর্ঘ্যের জ্যা । O বিন্দু থেকে AB জ্যা-এর দূরত্ব 4 সেমি হলে, CD জ্যা-এর দুরত্ব
(a) 2 সেমি (b) 4 সেমি (c) 6 সেমি (d) 8 সেমি
129. AB ও CD দুটি সমান্তরাল জ্যা-এর প্রত্যেকটির দৈর্ঘ্য 16 সেমি । বৃত্তের ব্যাসার্ধের দৈর্ঘ্য 10 সেমি হলে, জ্যা দুটির মধ্যে দুরত্ব
(a) 12 সেমি (b) 16 সেমি (c) 20 সেমি (d) 5 সেমি
130. 5 সেমি দৈর্ঘ্যের ব্যাসার্ধের একটি বৃত্তে AB এবং AC দুটি সমান দৈর্ঘ্যের জ্যা। বৃত্তের কেন্দ্র ABC ত্রিভুজের বাইরে অবস্থিত। AB=AC=6 সেমি হলে, BC জ্যা-এর দৈর্ঘ্য নির্ণয় করি।
131. P ও Q কেন্দ্রবিশিষ্ট দুটি বৃত্ত A ও B বিন্দুতে ছেদ করে। A বিন্দু দিয়ে PQ-এর সমান্তরাল সরলরেখা বৃত্তদুটিকে যথাক্রমে C ও D বিন্দুতে ছেদ করে। PQ=5 সেমি হলে, CD-এর দৈর্ঘ্য কত তা নির্ণয় করি ।
132. একটি সমকোণী চৌপলের আয়তন 432 ঘনসেমি। তাকে সমান আয়তনবিশিষ্ট দুটি ঘনক-এ পরিনত করা হলে, প্রতিটি ঘনকের প্রত্যেক ধারের দৈর্ঘ্য কত হবে হিসাব করে লিখি ।
133. একটি চা-এর বাক্সের ভেতরের দৈর্ঘ্য প্রস্থ ও উচ্চতা যথাক্রমে 7.5 ডেসিমি, 6 ডেসিমি এবং 5.4 ডেসিমি । চা ভর্তি বাক্সটির ওজন 52 কিগ্রা 350 গ্রাম। কিন্তু খালি অবস্থায় বাক্সটির ওজন 3.75 কিগ্রা হলে, 1 ঘন ডেসিমি চা-এর ওজন কত হবে তা হিসাব করে লিখি।
134. একটি বর্গাকার ভূমিবিশিষ্ট পিতলের প্লেটের দৈর্ঘ্য x সেমি, বেধ 1 মিলিমি এবং প্লেটটির ওজন 4725 গ্রাম। যদি 1 ঘনসেমি পিতলের ওজন 8.4 গ্রাম হয় তাহলে x-এর মান কত হবে তা হিসাব করে লিখি ।
135. ঘনকাকৃতি একটি সম্পূর্ণ জলপূর্ণ চৌবাচ্চা থেকে সমান মাপের 64 বালতি জল তুলে নিলে চৌবাচ্চাটির 1/3 অংশ জলপূর্ণ থাকে। চৌবাচ্চার একটি ধারের দৈর্ঘ্য 1.2 মিটার হলে, প্রতিটি বালতিতে কত লিটার জল ধরে তা হিসাব করে লিখি।
136. একটি আয়তঘনের তল সংখ্যা \(x\) ধার সংখ্যা \(y\) শীর্ষবিন্দুর সংখ্যা \(z\) এবং কর্ণের সংখ্যা \(p\) হলে \((x-y+z+p)\) -এর মান কত তা লিখি।
137. দুটি আয়তঘনের মাত্রাগুলির দৈর্ঘ্য যথাক্রমে 4,6,4 একক এবং 8,(2h-1),2 একক। যদি আয়তঘন দুটির ঘনফল সমান হয়, তাহলে h-এর মান কত তা লিখি।
138. p:q=5:7 এবং p-q=-4 হলে, 3p+4q এর মান নির্ণয় করি ।
139. 6,15,20 ও 43-এর প্রত্যেকটির সঙ্গে কত যোগ করলে যোগফলগুলি সমানুপাতী হবে হিসাব করে লিখি।
140. বার্ষিক 9% সুদের হারে কিছু টাকার 2 বছরের চক্রবৃদ্ধি সুদ ও সরল সুদের অন্তর 129.60 টাকা হলে, ওই টাকার পরিমান হিসাব করে লিখি ।
141. কোনো নির্দিষ্ট পরিমান মূলধনের 1 বছরের সরল সুদ 50 টাকা এবং 2 বছরের চক্রবৃদ্ধি সুদ 102 টাকা হলে, মূলধনের পরিমান ও বার্ষিক সুদের হার হিসাব করে লিখি ।
142. পহলমপুর গ্রামে বর্তমান লোকসংখ্যা 10000; ওই গ্রামে প্রতি বছর জনসংখ্যা বৃদ্ধির হার 3% হলে, 2 বছর পরে ওই গ্রামের জনসংখ্যা কত হবে, তা হিসাব করে লিখি ।
143. পাড়ার একটি লেদ কারখানার একটি মেশিনের মূল্য প্রতি বছর 10% হ্রাস প্রাপ্ত হয়। মেশিনটির বর্তমান মূল্য 100000 টাকা হলে, 3 বছর পরে ওই মেশিনটির মূল্য কত হবে, তা হিসাব করে লিখি ।
144. সর্বশিক্ষা অভিযানের ফলে বিদ্যালয় ছেড়ে চলে যাওয়া শিক্ষার্থীদের পুনরায় বিদ্যালয়ে ভর্তির ব্যবস্থা করা হয়েছে। এরূপ শিক্ষার্থীদের ভর্তির হার প্রতি বছর তার পূর্ববর্তী বছর অপেক্ষা 5% বৃদ্ধি পেয়েছে। কোনো এক জেলায় বর্তমান বছরে যদি 3528 জন এরূপ শিক্ষার্থী নতুন করে ভর্তি হয়ে থাকে, তবে 2 বছর পূর্বে এরূপ কতজন শিক্ষার্থী ভর্তি হয়েছিল, তা হিসাব করে লিখি ।
145. একটি মৎস্যজীবী সমবায় সমিতি উন্নত প্রথায় মাছ চাষ করার জন্য এরূপ একটি পরিকল্পনা গ্রহন করেছে যে কোনো বছরের মাছের উৎপাদন পূর্ববর্তী বছরের তুলনায় 10% বৃদ্ধি করবে। বর্তমান বছরে যদি ওই সমবায় সমিতি 400 কুইন্টাল মাছ উৎপাদন করে, তবে 3 বছর পরে সমবায় সমিতির মাছের উৎপাদন কত হবে, তা হিসাব করে লিখি ।
146. বোতল ভর্তি ঠান্ডা পানীয় ব্যবহারের উপর বিরূপ প্রতিক্রিয়া প্রচারের ফলে প্রতি বছর তার পূর্ববর্তী বছরের তুলনায় ওই ঠান্ডা পানীয় ব্যবহারকারীর সংখ্যা 25% হ্রাস পায়। 3 বছর পূর্বে কোনো শহরে ঠান্ডা পানীয় ব্যবহারকারীর সংখ্যা 80000 হলে, বর্তমান বছরে ঠান্ডা পানীয় ব্যবহারকারীর সংখ্যা কত হবে, তা হিসাব করে লিখি ।
147. \(\cfrac{x}{xa+yb+zc}=\cfrac{y}{ya+zb+xc} =\cfrac{z}{za+xb+yc} \) এবং \(x+y+z≠0\) হলে, দেখাই যে, প্রতিটি অনুপাত \(\cfrac{1}{a+b+c}\) এর সমান।
148. \(\cfrac{a}{2}=\cfrac{b}{3}=\cfrac{c}{4}=\cfrac{2a-3b+4c}{p}\) হলে, \(p\)-এর মান নির্ণয় করি।
149. \(\cfrac{3x-5y}{3x+5y}=\cfrac{1}{2}\) হলে, \(\cfrac{3x^2-5y^2}{3x^2+5y^2} \) এর মান নির্ণয় করি ।
150. \(x,12,y,27\) ক্রমিক সমানুপাতী হলে, \(x\) ও \(y\)-এর ধনাত্মক মান নির্ণয় করি।
151. 2, 4, 6 ও 10 -এর প্রত্যেকের সঙ্গে কোন সংখ্যা যােগ করলে যােগফলগুলি সমানুপাতী হবে হিসাব করে লিখি।
152. সমান ব্যাস ও উচ্চতাবিশিষ্ট তিনটি জারের প্রথমটির \(\frac{2}{3}\) অংশ, দ্বিতীয়টির \(\frac{5}{6}\) অংশ এবং তৃতীয়টির \(\frac{7}{9}\) অংশ লঘু সালফিউরিক অ্যাসিডে পূর্ণ ছিল । ওই তিনটি জারের অ্যাসিড যদি 2.1 দেসিমি. দৈর্ঘ্যের ব্যাসের একটি জারে রাখা হয়, তবে জারে অ্যাসিডের উচ্চতা 4.1 ডেসিমি. হয় । প্রথম তিনটি জারের ব্যাসের দৈর্ঘ্য 1.4 ডেসিমি. হলে, তাদের উচ্চতা হিসাব করে লিখি ।
153. সমান ঘনত্বের একটি লম্ব বৃত্তাকার কাঠের গুঁড়ির বক্রতলের ক্ষেত্রফল 440 বর্গ ডেসিমি. । এক ঘন ডেসিমি কাঠের ওজন 1.5 কিগ্রা. এবং গুঁড়িটির ওজন 9.24 কুইন্টাল হলে, গুঁড়িটির ব্যাসের দৈর্ঘ্য ও উচ্চতা হিসাব করে লিখি ।
154. ABC সমদ্বিবাহু ত্রিভুজের AB = AC. সমদ্বিবাহু ত্রিভুজটির পরিকেন্দ্র O এবং BC বাহুর যেদিকে A বিন্দু অবস্থিত তার বিপরীত পার্শ্বে কেন্দ্র O অবস্থিত। \(\angle\)BOC= 100° হলে \(\angle\)ABC ও \(\angle\)ABO-এর মান হিসাব করে লিখি।
155. পাশের চিত্রে ΔABC-এর পরিবৃত্তের কেন্দ্র O এবং \(\angle\)AOC = 110°; \(\angle\)ABC-এর মান হিসাব করে লিখি।
156. পাশের চিত্রে O কেন্দ্রীয় বৃত্তের \(\angle\)AOD = 40° এবং \(\angle\)ACB = 35°; \(\angle\)BCO ও \(\angle\)BOD-এর মান হিসাব করে লিখি ও উত্তরের সপক্ষে যুক্তি দিই।
157. পাশের চিত্রের O কেন্দ্রীয় বৃত্তের \(\angle\)APB = 80° হলে, \(\angle\)AOB ও \(\angle\)COD-এর মানের সমষ্টি নির্ণয় করি ও উত্তরের সপক্ষে যুক্তি দিই।
158. ABC ত্রিভুজের O পরিকেন্দ্র। \(\angle\)OAB = 50° হলে, \(\angle\)ACB-এর মান
(a) 50° (b) 100° (c) 40° (d) 80°
159. পাশের চিত্রে O বৃত্তের কেন্দ্র। \(\angle\)OAB = 40°, \(\angle\)ABC= 120°, \(\angle\)BCO = y° এবং \(\angle\)COA = x° হলে, x ও y-এর মান নির্ণয় করি।
160. ABC ত্রিভুজের পরিকেন্দ্র O এবং D বিন্দু BC বাহুর মধ্যবিন্দু। \(\angle\)BAC = 40° হলে, \(\angle\)BOD-এর মান নির্ণয় করি।
161. পাশের চিত্রে AOB বৃত্তের ব্যাস এবং বৃত্তের কেন্দ্র। OCব্যাসার্ধ AB-এর উপর লম্ব। যদি উপচাপ CB-এর উপর কোনো বিন্দু P হয়, তবে \(\angle\)BAC ও \(\angle\)APC-এর মান হিসাব করে লিখি।
162. পাশের চিত্রে O বৃত্তের কেন্দ্র। \(\angle\)BAD = 65°, \(\angle\)BDC = 45° হলে, \(\angle\)CBD-এর মান।
(a) 65° (b) 45° (c) 40° (d) 20°
163. পাশের চিত্রে O বৃত্তের কেন্দ্র। \(\angle\)AEB = 110° এবং \(\angle\)CBE = 30° হলে, \(\angle\)ADB -এর মান
(a) 70° (b) 60° (c) 80° (d) 90°
164. পাশের চিত্রে O বৃত্তের কেন্দ্র। \(\angle\)BCD = 28°, \(\angle\)AEC = 38° হলে, \(\angle\)AXB-এর মান
(a) 56° (b) 86° (c) 38° (d) 28°
165. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AB ব্যাস। AB || CD. \(\angle\)ABC = 25° হলে, \(\angle\)CED-এর মান
(a) 80° (b) 50° (c) 25° (d) 40°
166. পাশের চিত্রে O বৃত্তের কেন্দ্র, AC ব্যাস এবং জ্যা DE ও ব্যাস AC সমান্তরাল। \(\angle\)CBD = 60° হলে, \(\angle\)CDE-এর মান নির্ণয় করি।
167. AOB বৃত্তের ব্যাস। AC এবং BD জ্যা দুটি বর্ধিত করলে E বিন্দুতে মিলিত হয়। \(\angle\)COD = 40° হলে, \(\angle\)CED-এর মান
(a) 40° (b) 80° (c) 20° (d) 70°
168. পাশের চিত্রে O কেন্দ্রীয় বৃত্তে AB ব্যাস। C বৃত্তের উপর যে-কোনাে একটি বিন্দু। \(\angle\)BAC= 50° এবং CD, AB-এর উপর লম্ব হলে, \(\angle\)BCD-এর মান নির্ণয় করি।
169. (√5+√2) ÷√7=1/7 (√35+a) হলে, a-এর মান নির্ণয় করি ।
170. √6 ×√15=x√10 হলে x –এর মান হিসাব করে লিখি ।
171. পাশের চিত্রের O কেন্দ্রীয় বৃত্তের দুটি ব্যাসার্ধ OA ও OB-এর মধ্যবর্তী কোণ 130°; A ও B বিন্দুতে অঙ্কিত স্পর্শদ্বয় T বিন্দুতে ছেদ করে। \(\angle\)ATB এবং \(\angle\)ATO-এর মান হিসাব করে লিখি।
172. একটি পরিসংখ্যা বিভাজনের গড় 8.1, \(\sum f_i x_i = 132+5k\) এবং \(\sum f_i=20\)হলে, \(k\)-এর মান নির্ণয় করি।
173.
174. যদি একটি চিমনির গোড়ার সঙ্গে সমতলে অবস্থিত একটি বিন্দুর সাপেক্ষে চিমনির চুড়ার উন্নতি কোণ 60° হয় এবং সেই বিন্দু ও চিমনির গোড়ার সঙ্গে একই সরলরেখায় অবস্থিত ওই বিন্দু থেকে আরও 24 মিটার দূরের অপর একটি বিন্দুর সাপেক্ষে চিমনির চুড়ার উন্নতি কোণ 30° হয়, তাহলে চিমনির উচ্চতা হিসাব করে লিখি। [√3 -এর আসন্ন মান 1.732 ধরে তিন দশমিক স্থান পর্যন্ত আসন্ন মান নির্ণয় করি]
175. একটি সমকোণী ত্রিভুজাকারক্ষেত্র ABC-এর অতিভুজ AC-এর দৈর্ঘ্য 100 মিটার এবং AB=50√3 মিটার হলে, \(\angle\)C এর মান নির্ণয় করি।
176. sin 10θ = cos 8θ এবং 10θ ধনাত্মক সূক্ষ্মকোণ হলে, tan9θ -এর মান নির্ণয় করি।
177. tan 4θ × tan6θ =1 এবং 6θ ধনাত্মক সূক্ষ্মকোণ হলে, θ -এর মান নির্ণয় করি।
178. sec 5A = cosec (A+36°) এবং 5A ধনাত্মক সূক্ষ্মকোণ হলে, A-এর মান নির্ণয় করি।
179. secθ + tanθ = 2 হলে, (secθ- tanθ)-এর মান নির্ণয় করি।
180. sinθ+ cosθ=1 হলে, sinθ × cosθ এর মান নির্ণয় করি।
181. tanθ+ cotθ= 2 হলে, (tanθ- cotθ)-এর মান নির্ণয় করি।
182. sinθ- cosθ= \(\cfrac{7}{13}\) হলে, sinθ+ cosθ-এর মান নির্ণয় করি।
183. PQR ত্রিভুজে ∠Q সমকোণ। PR=√5 একক এবং PQ-RQ=1 একক হলে, cosP-cosR -এর মান নির্ণয় করি।
184. XYZ ত্রিভুজে∠Y সমকোণ । XY=2√3 একক এবং XZ-YZ=2 একক হলে, (secX-tanX)-এর মান নির্ণয় করি।
185. \(x sin 45° \) \(cos 45° \) \(tan 60° \) \(= tan^2 45°\) \(- cos60°\) হলে, \(x\)-এর মান নির্ণয় করি।
186. \(x sin 60° cos^2 30° = \cfrac{tan^2 45° sec60° }{cosec60°}\)হলে, \(x\)-এর মান নির্ণয় করি।
187. \(x^2 = sin^2 30° + 4cot^2 45° – sec^2 60°\) হলে, \(x\)-এর মান নির্ণয় করি।
188. সোমা একটি সমকোণী ত্রিভুজ ABC এঁকেছে যার ∠ABC=90°, AB=24 সেমি. এবং BC=7 সেমি.। হিসাব করে sinA, cosA, tanA ও cosecA-এর মান লিখি।
189. যদি \(sin C= \cfrac{2}{3}\) হয়, তবে \(cos C × cosec C\)-এর মান হিসাব করে লিখি।
190. ABC ত্রিভুজের AB = (2a-1) সেমি., AC= 2√2a সেমি. এবং BC = (2a+1) সেমি. হলে ∠BAC-এর মান লিখি।
191. একটি নিরেট লম্ব বৃত্তাকার শঙ্কুর উচ্চতা 20 সেমি. এবং তির্যক উচ্চতা 25 সেমি.। শঙ্কুটির সমান আয়তনবিশিষ্ট একটি নিরেট লম্ব বৃত্তাকার চোঙের উচ্চতা 15 সেমি. হলে, চোঙটির ভূমিতলের ব্যাসের দৈর্ঘ্য হিসাব করে লিখি।
192. একটি নিরেট গোলক ও একটি নিরেট লম্ব বৃত্তাকার চোঙের ব্যাসার্ধের দৈর্ঘ্য সমান ও তাদের ঘনফলও সমান হলে, চোঙটির ব্যাসার্ধের দৈর্ঘ্য ও উচ্চতার অনুপাত হিসাব করে লিখি।
193. একটি নিরেট লম্ব বৃত্তাকার শঙ্কুর, ভূমিতলের ব্যাসার্ধের দৈর্ঘ্য একটি নিরেট গোলকের ব্যাসার্ধের দৈর্ঘ্যের সমান। গোলকের আয়তন শঙ্কুর আয়তনের দ্বিগুণ হলে, শঙ্কুর উচ্চতা এবং ভূমিতলের ব্যাসার্ধের দৈর্ঘ্যের অনুপাত কত তা লিখি।
194. পাশের চিত্রে, ∠ACB = ∠BAD এবং AD \(\bot\) BC; AC = 15 সেমি., AB = 20 সেমি. এবং BC = 25 সেমি. হলে, AD-এর দৈর্ঘ্য কত তা লিখি।
195. পাশের চিত্রে, ∠ABC = 90° এবং BD \(\bot\) AC; যদি AB = 30 সেমি., BD = 24 সেমি. এবং AD = 18 সেমি. হলে, BC-এর দৈর্ঘ্য কত তা লিখি।
196. ∆ABC~∆DEF এবং ∆ABC ও ∆DEF -এ AB, BC ও CA বাহুর অনুরূপ বাহুগুলি যথাক্রমে DE, EF ও DF; ∠A = 47° এবং ∠E = 83° হলে, ∠C-এর পরিমাপ কত তা লিখি।
197. যদি AP = QC, AB-এর দৈর্ঘ্য 12 একক এবং AQ-এর দৈর্ঘ্য 2 একক হয়, তবে CQ-এর দৈর্ঘ্য কত হবে, হিসাব করে লিখি।
198. ∆ABC-এর BC বাহুর সমান্তরাল সরলরেখা AB এবং AC বাহুকে যথাক্রমে X এবং Y বিন্দুতে ছেদ করে। AX = 2.4 সেমি., AY = 3.2 সেমি. এবং YC = 4.8 সেমি., হলে, AB-এর দৈর্ঘ্য
(a) 3.6 সেমি. (b) 6 সেমি. (c) 6.4 সেমি. (d) 7.2 সেমি.
199. পাশের চিত্রে DE || BC এবং AD : BD = 3:5 হলে, ∆ADE-এর ক্ষেত্রফল : ∆CDE-এর ক্ষেত্রফল কত তা লিখি।
200. পাশের চিত্রে, LM || AB এবং AL= (x-3) একক, AC = 2x একক, BM = (x-2) একক এবং BC= (2x + 3) একক হলে, x-এর মান নির্ণয় করি।
201. পাশের চিত্রে, ABC ত্রিভুজে DE || PQ || BC এবং AD=3 সেমি., DP = x সেমি., PB = 4 সেমি., AE = 4 সেমি., EQ = 5 সেমি., QC =y সেমি. হলে, x এবং y-এর মান নির্ণয় করি।
202. পাশের চিত্রে, DE || BC, BE || XC এবং \(\frac{AD}{DB}=\frac{2}{1}\) হলে, \(\frac{AX}{XB}\) -এর মান নির্ণয় করি।
203. পাশের চিত্রে বৃত্তের কেন্দ্র O এবং BOA বৃত্তের ব্যাস। বৃত্তের P বিন্দুতে অঙ্কিত স্পর্শক বর্ধিত BA কে T বিন্দুতে ছেদ করে। ∠PBO=30°হলে,∠PTAএর মান নির্ণয় করি।
204. পাশের চিত্রে ABC ত্রিভূজটি একটি বৃত্তে পরিলিখিত এবং বৃত্তকে P,Q,R বিন্দুতে স্পর্শ করে। যদি AP=4 সেমি,BP=6 সেমি,AC=12 সেমি এবং BC=x সেমি হয়,তবে x এর মান নির্ণয় করি।
205. দুটি A ও B-এর সম্পর্কিত মানগুলি
206. x ও y দুটি চল এবং তাদের সম্পর্কিত মানগুলি
207. পাশের ছবির PQRS বৃত্তস্থ চতুর্ভুজের কর্ণদ্বয় পরস্পরকে X বিন্দুতে এমনভাবে ছেদ করেছে যে ∠PRS = 65° এবং ∠RQS = 45°; ∠SQP ও ∠RSP-এর মান হিসাব করে লিখি।
208. ABCD বৃত্তস্থ চতুর্ভুজের AB বাহুকে X বিন্দু পর্যন্ত বর্ধিত করলাম এবং মেপে দেখছি ∠XBC = 82° এবং ∠ADB = 47°; ∠BAC-এর মান হিসাব করে লিখি।
209. PQRS বৃত্তস্থ চতুর্ভুজের PQ, SR বাহু দুটি বর্ধিত করায় T বিন্দুতে মিলিত হলো। বৃত্তের কেন্দ্র O; \(\angle\)POQ=110°, \(\angle\)QOR= 60°, \(\angle\)ROS = 80° হলে \(\angle\)RQS ও \(\angle\)QTR-এর মান হিসাব করে লিখি।
210. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AB ব্যাস। ABCD বৃত্তস্থ চতুর্ভুজ। ∠ADC = 120° হলে, ∠BAC-এর মান
(a) 50° (b) 60° (c) 30° (d) 40°
211. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AB ব্যাস। ABCD বৃত্তস্থ চতুর্ভুজ। ∠ABC = 65°, ∠DAC = 40° হলে, ∠BCD-এর মান
(a) 75° (b) 105° (c) 115° (d) 80°
212. পাশের চিত্রে ABCD বৃত্তস্থ চতুর্ভুজ। BA -কে F বিন্দু পর্যন্ত বর্ধিত করা হলো। AE || CD, ∠ABC = 92° এবং ∠FAE = 20° হলে, ∠BCD-এর মান
(a) 20° (b) 88° (c) 108° (d) 72°
213. পাশের চিত্রে দুটি বৃত্ত পরস্পরকে C ও D বিন্দুতে ছেদ করে। D ও C বিন্দুগামী দুটি সরলরেখা একটি বৃত্তকে যথাক্রমে A ও B বিন্দুতে এবং অপর বৃত্তকে E ও F বিন্দুতে ছেদ করে। ∠DAB = 75° হলে, ∠DEF-এর মান
(a) 75° (b) 70° (c) 60° (d) 105°
214. পাশের চিত্রে P ও Q কেন্দ্রবিশিষ্ট বৃত্তদুটি B ও C বিন্দুতে ছেদ করেছে। ACD একটি সরলরেখাংশ। ∠ARB = 150°, ∠BQD = x° হলে, x-এর মান নির্ণয় করি।
215. পাশের চিত্রে দুটি বৃত্ত পরস্পর P ও Q বিন্দুতে ছেদ করে। ∠QAD = 80° এবং ∠PDA = 84° হলে, ∠QBC ও ∠BCP-এর মান নির্ণয় করি।
216. পাশের চিত্রে ∠BAD=60°, ∠ABC=80° হলে, ∠DPC এবং ∠BQC-এর মান নির্ণয় করি।
217. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AC ব্যাস। ∠AOB = 80° এবং ∠ACE = 10° হলে, ∠BED-এর মান নির্ণয় করি।
218. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AB বৃত্তের ব্যাস। ∠AOD = 140° এবং ∠CAB = 50° হলে, ∠BED-এর মান নির্ণয় করি।
219. \(m^2+\cfrac{1}{m^2}\) - এর সরলতম মান নির্ণয় করি ।
220. \(m^3+\cfrac{1}{m^3}\) - এর সরলতম মান নির্ণয় করি ।
221. যদি \(x=2, y=3\) এবং \(z=6\) হয়, তবে, \(\cfrac{3√x}{√y+√z}-\cfrac{4√y}{√z+√x}+\cfrac{√z}{√x+√y}\) -এর মান হিসাব করে লিখি ।
222. \(x+\cfrac{1}{x}\)
223. \(x=2+√3\) হলে, \(x+\cfrac{1}{x}\) এর মান
(a) 2 (b) 2√3 (c) 4 (d) 2-√3
224. \(\Big[\cfrac{1}{√2+1}+\cfrac{1}{√3+√2}+\cfrac{1}{√4+√3}\Big]\) -এর সরলতম মান লিখি ।
225. একটি সমকোণী ত্রিভুজের সূক্ষ্মকোণ দুটির অন্তর \(\cfrac{2π}{5}\) হলে, ষষ্টিক পদ্ধতিতে ওই কোণদ্বয়ের মান লিখি।
226. দুটি কোণের সমষ্টি 135° এবং তাদের অন্তর \(\cfrac{π}{12}\) হলে, কোণ দুটির ষষ্টিক ও বৃত্তীয় মান হিসাব করে লিখি।
227. একটি ত্রিভুজের কোণ তিনটির অনুপাত 2:3:4 হলে, ত্রিভুজটির বৃহত্তম কোণটির বৃত্তীয় মান হিসাব করে লিখি।
228. একটি বৃত্তের অসমান দৈর্ঘ্যের দুটি চাপ কেন্দ্রে যে কোণ ধারণ করে আছে তার অনুপাত 5:2 এবং দ্বিতীয় কোণটির ষষ্টিক মান 30° হলে, প্রথম কোণটির ষষ্টিক মান ও বৃত্তীয় মান হিসাব করে লিখি।
229. কোনো চতুর্ভুজের তিনটি কোণের পরিমাপ যথাক্রমে, \(\cfrac{\pi}{3}\) ,\(\cfrac{5\pi}{6}\) ও 90° হলে, চতুর্থ কোণটির ষষ্টিক ও বৃত্তীয় মান হিসাব করে লিখি।
230. একটি কোণের ডিগ্রিতে মান \(D\) এবং ওই কোণের রেডিয়ানে মান \(R\) হলে, \(\cfrac{R}{D}\) -এর মান নির্ণয় করি।
231. নীচের ত্রিভুজ জোড়া দেখি ও ∠A-এর মান হিসাব করে লিখি।
232. নীচের পরিসংখ্যা বিভাজনের যৌগিক গড় 50 এবং মোট পরিসংখ্যা 120 হলে, \(f_1\) ও \(f_2\) এর মান নির্ণয় কর ।