1. āϝāĻĻāĻŋ \(x=2+â3\) āĻāĻŦāĻ \(y=2-â3\) āĻšā§, āϤāĻŦā§ \(x-\cfrac{1}{x}\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
2. āϝāĻĻāĻŋ \(x=2+â3\) āĻāĻŦāĻ \(y=2-â3\) āĻšā§, āϤāĻŦā§ \(y^2+\cfrac{1}{y^2}\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
3. āϝāĻĻāĻŋ \(x=2+â3\) āĻāĻŦāĻ \(y=2-â3\) āĻšā§, āϤāĻŦā§ \(x^3-\cfrac{1}{x^3}\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
4. āϝāĻĻāĻŋ \(x=2+â3\) āĻāĻŦāĻ \(y=2-â3\) āĻšā§, āϤāĻŦā§ \(xy+\cfrac{1}{xy}\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
5. āĻĒāĻžāĻļā§āϰ āĻāĻŋāϤā§āϰ⧠ABC āϤā§āϰāĻŋāĻā§āĻāĻāĻŋ āĻāĻāĻāĻŋ āĻŦā§āϤā§āϤ⧠āĻĒāϰāĻŋāϞāĻŋāĻāĻŋāϤ āĻāĻŦāĻ āĻŦā§āϤā§āϤāĻā§ P,Q,R āĻŦāĻŋāύā§āĻĻā§āϤ⧠āϏā§āĻĒāϰā§āĻļ āĻāϰā§āĨ¤ āϝāĻĻāĻŋ AP=4 āϏā§āĻŽāĻŋ,BP=6 āϏā§āĻŽāĻŋ,AC=12 āϏā§āĻŽāĻŋ āĻāĻŦāĻ BC=x āϏā§āĻŽāĻŋ āĻšā§,āϤāĻŦā§ x āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋāĨ¤
6. āϝāĻĻāĻŋ \(a=\cfrac{â5+1}{â5-1}\) āĻ \(b=\cfrac{â5-1}{â5+1}\) āĻšā§, āϤāĻŦā§ \(\cfrac{a^2+ab+b^2}{a^2-ab+b^2}\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
7. āϝāĻĻāĻŋ \(a=\cfrac{â5+1}{â5-1}\) āĻ \(b=\cfrac{â5-1}{â5+1}\) āĻšā§, āϤāĻŦā§ \(\cfrac{(a-b)^3}{(a+b)^3}\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
8. āϝāĻĻāĻŋ \(a=\cfrac{â5+1}{â5-1}\) āĻ \(b=\cfrac{â5-1}{â5+1}\) āĻšā§, āϤāĻŦā§ \(\cfrac{3a^2+5ab+3b^2} āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤{3a^2-5ab+3b^2}\)
9. āϝāĻĻāĻŋ \(a=\cfrac{â5+1}{â5-1}\) āĻ \(b=\cfrac{â5-1}{â5+1}\) āĻšā§, āϤāĻŦā§ \(\cfrac{a^3+b^3}{a^3-b^3}\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
10. āϝāĻĻāĻŋ \(x=7+4\sqrt3\) āĻšā§, āϤāĻŦā§, \(\cfrac{x^3}{x^6+7x^3+1}\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ āĨ¤
(a) \(\cfrac{1}{2737}\) (b) \(\cfrac{1}{2730}\) (c) \(\cfrac{1}{2710}\) (d) \(\cfrac{1}{2709}\)
11. āϝāĻĻāĻŋ \(rcosθ = 2â3\) , \(rsinθ =2\) āĻāĻŦāĻ \(0°<θ<90°\) āĻšāϝāĻŧ, āϤāĻŦā§ \(r\) ,āĻ \(θ\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰā§āĨ¤ Madhyamik 2024
12. āϝāĻĻāĻŋ \(x=\cfrac{2\sqrt{15}}{\sqrt5+\sqrt3}\) āĻšā§, āϤāĻŦā§ \(\cfrac{x+\sqrt3}{x-\sqrt3}\) \(+\cfrac{x+\sqrt5}{x-\sqrt5}\) - āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ āĨ¤ Madhyamik 2005
13. āϝāĻĻāĻŋ \(x=2, y=3\) āĻāĻŦāĻ \(z=6\) āĻšā§, āϤāĻŦā§, \(\cfrac{3âx}{ây+âz}-\cfrac{4ây}{âz+âx}+\cfrac{âz}{âx+ây}\) -āĻāϰ āĻŽāĻžāύ āĻšāĻŋāϏāĻžāĻŦ āĻāϰ⧠āϞāĻŋāĻāĻŋ āĨ¤
14. āϝāĻĻāĻŋ \(x=\cfrac{\sqrt3-\sqrt2}{\sqrt3+\sqrt2}\) āĻāĻŦāĻ \(xy=1\) āĻšāϝāĻŧ, āϤāĻŦā§ \(3x^2-5xy+3y^2\) āĻāϰ āĻŽāĻžāύ āĻāϤ?
15. āϝāĻĻāĻŋ \(rcosθ = 2â3\) , \(rsinθ =2\) āĻāĻŦāĻ \(0°<θ<90°\) āĻšāϝāĻŧ, āϤāĻŦā§ \(r\) ,āĻ \(θ\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰā§āĨ¤
16. āϝāĻĻāĻŋ \(rcosθ = 2â3\) , \(rsinθ =2\) āĻāĻŦāĻ \(0°<θ<90°\) āĻšāϝāĻŧ, āϤāĻŦā§ \(r\) ,āĻ \(θ\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰā§āĨ¤
17. āϝāĻĻāĻŋ \(ax^2+7x+b=0\) āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻĻā§āĻāĻŋ āĻŦā§āĻ \(\cfrac{2}{3}\) āĻ \(-3\) āĻšā§ āϤāĻŦā§ \(a\) āĻ \(b\) -āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
18. āϝāĻĻāĻŋ āĻĻā§āĻ āĻ āĻā§āĻā§āϰ āĻāĻāĻāĻŋ āϧāύāĻžāϤā§āĻŽāĻ āϏāĻāĻā§āϝāĻžāĻā§ āĻāĻšāĻžāϰ āĻāĻāĻā§āϰ āĻāϰā§āϰ āĻ āĻā§āĻ āĻĻāĻŋā§ā§ āĻā§āĻŖ āĻāϰāϞ⧠āĻā§āĻŖāĻĢāϞ 189 āĻšā§ āĻāĻŦāĻ āĻĻāĻļāĻā§āϰ āĻāϰā§āϰ āĻ āĻā§āĻ āĻāĻāĻā§āϰ āĻāϰā§āϰ āĻ āĻā§āĻā§āϰ āĻĻā§āĻŦāĻŋāĻā§āύ āĻšā§, āϤāĻŦā§ āĻāĻāĻā§āϰ āĻāϰā§āϰ āĻ āĻā§āĻāĻāĻŋ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
19. āĻŦāĻžāϰā§āώāĻŋāĻ āĻāĻā§āϰāĻŦā§āĻĻā§āϧāĻŋ āϏā§āĻĻā§āϰ āĻšāĻžāϰ āϝāĻĻāĻŋ āĻĒā§āϰāĻĨāĻŽ āĻŦāĻāϰ 5% āĻāĻŦāĻ āĻĻā§āĻŦāĻŋāϤā§ā§ āĻŦāĻāϰ 6% āĻšā§, āϤāĻŦā§ 5000 āĻāĻžāĻāĻžāϰ 2 āĻŦāĻāϰā§āϰ āĻāĻā§āϰāĻŦā§āĻĻā§āϧāĻŋ āϏā§āĻĻ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
20. āĻĢāĻžā§āĻžāϰ āĻŦā§āϰāĻŋāĻā§āĻĄā§āϰ āĻā§āύ⧠āĻāĻāĻāĻŋ āĻĻāϞ āĻāĻāĻāĻŋ āĻāϞāĻāϰāϤāĻŋ āϞāĻŽā§āĻŦ āĻŦā§āϤā§āϤāĻžāĻāĻžāϰ āĻā§āϝāĻžāĻā§āĻāĻžāϰā§āϰ āĻāϞ 2 āϏā§āĻŽāĻŋ. āĻĻā§āϰā§āĻā§āϝā§āϰ āĻŦā§āϝāĻžāϏā§āϰ āϤāĻŋāύāĻāĻŋ āĻšā§āϏ āĻĒāĻžāĻāĻĒ āĻĻāĻŋā§ā§ āĻŽāĻŋāύāĻŋāĻā§ 420 āĻŽāĻŋāĻāĻžāϰ āĻŦā§āĻā§ āĻĸā§āϞ⧠40 āĻŽāĻŋāύāĻŋāĻā§ āĻāĻā§āύ āύā§āĻāĻžāϞāĨ¤ āϝāĻĻāĻŋ āĻā§āϝāĻžāĻā§āĻāĻžāϰāĻāĻŋāϰ āĻŦā§āϝāĻžāϏā§āϰ āĻĻā§āϰā§āĻā§āϝ 2.8 āĻŽāĻŋāĻāĻžāϰ āĻāĻŦāĻ āĻĻā§āϰā§āĻā§āϝ 6 āĻŽāĻŋāĻāĻžāϰ āĻšā§, āϤāĻŦā§ (i) āĻāĻā§āύ āύā§āĻāĻžāϤ⧠āĻāϤ āĻāϞ āĻāϰāĻ āĻšā§ā§āĻā§ āĻāĻŦāĻ (ii) āĻā§āϝāĻžāĻā§āĻāĻžāϰ⧠āĻāϰ āĻāϤ āĻāϞ āϰā§ā§āĻā§ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
21. āĻĒāĻžāĻļā§āϰ āĻāĻŋāϤā§āϰ⧠O āĻā§āύā§āĻĻā§āϰāĻŦāĻŋāĻļāĻŋāώā§āĻ āĻŦā§āϤā§āϤ⧠āĻŦāĻšāĻŋāĻāϏā§āĻĨ āĻŦāĻŋāύā§āĻĻā§ C āĻĨā§āĻā§ āĻ āĻā§āĻāĻŋāϤ āĻĻā§āĻāĻŋ āϏā§āĻĒāϰā§āĻļāĻ āĻŦā§āϤā§āϤāĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ P āĻ Q āĻŦāĻŋāύā§āĻĻā§āϤ⧠āϏā§āĻĒāϰā§āĻļ āĻāϰā§āĻā§āĨ¤ āĻŦā§āϤā§āϤā§āϰ āĻ āĻĒāϰ āĻāĻāĻāĻŋ āĻŦāĻŋāύā§āĻĻā§ R āϤ⧠āĻ āĻā§āĻāĻŋāϤ āϏā§āĻĒāϰā§āĻļāĻ CP āĻ CQ āĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ A āĻ B āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§āĨ¤ āϝāĻĻāĻŋ,CP=11 āϏā§āĻŽāĻŋ āĻāĻŦāĻ BC =7 āϏā§āĻŽāĻŋ āĻšā§,āϤāĻžāĻšāϞ⧠BR āĻāϰ āĻĻā§āϰā§āĻā§āϝ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
22. āϝāĻĻāĻŋ \(x=2, y=3\) āĻāĻŦāĻ \(z=6\) āĻšā§, āϤāĻŦā§, \(\cfrac{3âx}{ây+âz}-\cfrac{4ây}{âz+âx}+\cfrac{âz}{âx+ây}\) -āĻāϰ āĻŽāĻžāύ āĻšāĻŋāϏāĻžāĻŦ āĻāϰ⧠āϞāĻŋāĻāĻŋ āĨ¤
23. \(\triangle\)ABC-āĻāϰ AC = BC āĻāĻŦāĻ BC āĻŦāĻžāĻšā§āĻā§ D āĻĒāϰā§āϝāύā§āϤ āĻŦāϰā§āϧāĻŋāϤ āĻāϰāϞāĻžāĻŽāĨ¤ āϝāĻĻāĻŋ \(\angle\)ACD=144° āĻšāϝāĻŧ, āϤāĻŦā§ ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻĒā§āϰāϤāĻŋāĻāĻŋ āĻā§āĻŖā§āϰ āĻŦā§āϤā§āϤā§āϝāĻŧ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāĻŋāĨ¤