1. 7
2. 18
3. 24
4. 28
5. 13
6. 29
7. জ্যামিতিক উপায়ে \(\sqrt{33}\) এর মান নির্ণয় করো।
8. জ্যামিতিক উপায়ে √24 এর মান নির্ণয় করো। (কেবলমাত্র অঙ্কন চিহ্ন দিতে হবে। )
9. জ্যামিতিক উপায়ে √21 এর মান নির্ণয় করো। (কেবলমাত্র অঙ্কন চিহ্ন দিতে হবে)।
10. জ্যামিতিক উপায়ে √23 এর মান নির্ণয় করো। (কেবলমাত্র অঙ্কনচিহ্ন দেবে)
11. জ্যামিতিক উপায়ে √23 এর মান নির্ণয় করো। (প্রত্যেক ক্ষেত্রে কেবলমাত্র অঙ্কন চিহ্ন দিতে হবে।)
12. যদি \(x^2+7x+m=0\) এর বীজদ্বয় দুটি ক্রমিক অখণ্ড সংখ্যা হয় তবে \(m\) এর মান নির্ণয় কর।
13. কোনো তথ্যসমূহের যদি \(∑_{i=1}^n (x_i-7)\) \(=-8\) এবং \(∑_{i=1}^n=(x_i+3)=72\) হয়, তবে \(\bar{x}\) ও \(n\) এর মান নির্ণয় করো।
14. \(a:b = 3:4\) এবং \(x:y =5:7\) হলে \((3ax-by) : (4by –7ax)\) এর মান নির্ণয় করো।
15. 11, 12, 14, x - 2, x + 4, x + 9, 32, 38, 47 রাশিগুলি ঊর্ধ্বক্রমানুসারে সাজানো এবং তাদের মধ্যমা 24 হলে, x -এর মান নির্ণয় করো । Madhyamik 2017
16. A-এর 75% = B-এর 50%; A : B নির্ণয় করাে। Madhyamik 2016
17. ABCD বৃত্তস্থ চতুর্ভুজের AB বাহুকে X বিন্দু পর্যন্ত বর্ধিত করা হয়। \(\angle XBC = 82°\) এবং\( \angle ADB = 47°\) হলে \(\angle BAC\)-এর মান নির্ণয় করাে । Madhyamik 2015
18. A-এর 75% = B-এর 40% হলে (A : B) নির্ণয় করাে। Madhyamik 2013
19. \(x=\cfrac{\sqrt7+\sqrt3}{\sqrt7-\sqrt3}\) এবং \(xy=1\) হলে, \(\cfrac{x^2+3xy+y^2}{x^2-3xy+y^2}\) -এর মান নির্ণয় কর। Madhyamik 2004
20. \((\sqrt7+1)\) ও \((\sqrt5+\sqrt3)\) এর মধ্যে কোনটি বড় নির্ণয় কর।
21. ABCD একটি বৃত্তস্থ চতুর্ভুজ, যার \(\angle\)BCD=100°, \(\angle\)ABD=70°, \(\angle\)ADB-এর মান নির্ণয় করো ।
22. \(\cfrac{secθ+tanθ}{secθ-tanθ}=2\cfrac{51}{79}\) হলে \(sinθ\) -এর মান নির্ণয় করো।
23. \(cos43° =\cfrac{x}{\sqrt{x^2+y^2}}\) হলে, \(tan47°\)-এর মান নির্ণয় করো।
24. \(p : q = 5 : 7\) এবং \(p - q = -4\) হলে, \(3p - 4q\) এর মান নির্ণয় কর।
25. O কেন্দ্রীয় বৃত্তের দুটি জ্যা AB ও CD পরস্পরকে P বিন্দুতে ছেদ করে যদি \(\angle\)AOD = 100° এবং \(\angle\)BOC=70° হয় তাহলে \(\angle\)APC এর মান নির্ণয় করাে।
26. O কেন্দ্রীয় বৃত্তে ABC ত্রিভুজটি অন্তর্লিখিত। যদি \(\angle\)BAC=85° এবং \(\angle\)BCA=75° হয়, তাহলে \(\angle\)AOC-এর মান নির্ণয় করাে।
27. p : q = 5 : 7 এবং p - q = -4 হলে 3p + 4q-এর মান নির্ণয় কর।
28. \(\triangle\)ABC এর AB=9 সেমি, BC=6 সেমি, CA=7.5 সেমি ADEF এর। BC বাহুর অনুরূপ বাহু EF। EF=8 সেমি আবার \(\triangle\)ABC\(\sim \triangle\)DEF হলে,\(\triangle\)DEF এর পরিসীমা নির্ণয় করাে।
29. \(7x^2+5x-4=0\) দ্বিঘাত সমীকরণের বীজদ্বয় \(\alpha\) ও \(\beta\) হলে \(\cfrac{\alpha^2}{\beta}+\cfrac{\beta^2}{\alpha}\) এর মান নির্ণয় করাে।
30. \(x=7+4\sqrt3\) হলে \(x +\cfrac{1}{x}\) এর মান নির্ণয় করাে।
31. যদি \(ax^2+7x+b=0\) দ্বিঘাত সমীকরণের দুটি বীজ \(\cfrac{2}{3}\) ও \(-3\) হয় তবে \(a\) ও \(b\) -এর মান নির্ণয় করাে।
32. \(4x^2+4(3m+1)x+(m-7)-20=0\) দ্বিঘাত সমীকরণটির বীজ দুটি পরস্পর অনোন্যক হলে \(m\) -এর মান নির্ণয় করাে।
33. \(\tan\cfrac{3\pi}{20}\cdot \tan\cfrac{4\pi}{20}\cdot\tan\cfrac{5\pi}{20}\cdot\tan\cfrac{6\pi}{20}\) \(\cdot\tan\cfrac{7\pi}{20}\) এর সরলতম মান নির্ণয় করো ।
34. এই তথ্যটির গড় \(20.6\), \(a\) এর মান নির্ণয় করো।
35. 11, 12, 14, x-2, x+4, x+9, 32, 38, 47 রাশিগুলি ঊর্ধ্বক্রমানুসারে সাজানো এবং তাদের মধ্যমা 24 হলে, x এর মান নির্ণয় করো।
36. একটি চা-এর বাক্সের ভিতরের দৈর্ঘ্য, প্রস্থ ও উচ্চতা যথাক্রমে 7.5 ডেসিমি., 6 ডেসিমি, এবং 5.4 ডেসিমি. । চা ভর্তি বাক্সটির ওজন 52 কিগ্রা. 350 গ্রাম। কিন্তু খালি অবস্থায় বাক্সটির ওজন 3.75 কিথা হলে, 1 ঘন ডেসিমি, চা-এর ওজন কত হবে তা নির্ণয় করো। Madhyamik 2022
37. \(\triangle\)ABC এর DE || BC, যেখানে D ও E যথাক্রমে AB ও AC বাহুর ওপর অবস্থিত। যদি AD = 5 সেমি DB = 6 সেমি. এবং AE = 7.5 সেমি হয়, তবে AC এর দৈর্ঘ্য নির্ণয় করো। Madhyamik 2022
38. কোনো ব্যবসায় A ও B এর মূলধনের অনুপাত \(\cfrac{1}{7}:\cfrac{1}{4}\) বছরের শেষে 11,000 টাকা লাভ হলে তাদের লভ্যাংশের পরিমাণ নির্ণয় করো। Madhyamik 2023
39. যদি নীচের পরিসংখ্যা বিভাজন তালিকার যৌগিক গড় 54 হয়, তবে k-এর মান নির্ণয় করি।
40. নীচের প্রদত্ত রাশিতথ্য থেকে সংখ্যাগুরুমান নির্ণয় করি।
41. যদি একটি চিমনির গোড়ার সঙ্গে সমতলে অবস্থিত একটি বিন্দুর সাপেক্ষে চিমনির চুড়ার উন্নতি কোণ 60° হয় এবং সেই বিন্দু ও চিমনির গোড়ার সঙ্গে একই সরলরেখায় অবস্থিত ওই বিন্দু থেকে আরও 24 মিটার দূরের অপর একটি বিন্দুর সাপেক্ষে চিমনির চুড়ার উন্নতি কোণ 30° হয়, তাহলে চিমনির উচ্চতা হিসাব করে লিখি। [√3 -এর আসন্ন মান 1.732 ধরে তিন দশমিক স্থান পর্যন্ত আসন্ন মান নির্ণয় করি]
42. \(\cfrac{2 \sin^2 63°+1+2 \sin^2 27°}{3 \cos^2 17°-2+3 \cos^2 73°}\) -এর মান নির্ণয় করি।
43. \(\tan θ=1\) হলে \(\cfrac{8 \sin θ+5 \cos θ}{\sin^3 θ-2 \cos^3 θ + 7 \cos θ}\) -এর মান নির্ণয় করি।
44. sinθ- cosθ= \(\cfrac{7}{13}\) হলে, sinθ+ cosθ-এর মান নির্ণয় করি।
45. A,B এবং C এর মধ্যে 4000 টাকা বন্টন করা হল । A 4 টাকা পেলে B 5 টাকা এবং C 7 টাকা পেলে A 8 টাকা পায় । তাহলে A কত টাকা পাবে ?
(a) 1120 টাকা (b) 1600 টাকা (c) 1280 টাকা (d) কোনোটিই নয়
46. \(a, 2a^2, 3a^3\)-এর চতুর্থ সমানুপাতী নির্ণয় করো।
(a) \(6a^3\) (b) \(6a^2\) (c) \(6a^4\) (d) \(6a\)
47. ABCD একটি বৃত্তস্থ চতুর্ভুজ। CD-কে E পর্যন্ত বর্ধিত করা হল। যদি \(\angle\)ADE = 70° হয়, তাহলে \(\angle\)ABC-এর মান হবে
(a) 140\(^o\) (b) 35\(^o\) (c) 105\(^o\) (d) 70\(^o\)
48. যদি \(x=7+4\sqrt3\) হয়, তবে, \(\cfrac{x^3}{x^6+7x^3+1}\) এর মান নির্ণয় কর ।
(a) \(\cfrac{1}{2737}\) (b) \(\cfrac{1}{2730}\) (c) \(\cfrac{1}{2710}\) (d) \(\cfrac{1}{2709}\)
49. একটি আয়তঘনের কর্ণ √725 সেমি এবং আয়তন 3000 ঘনসেমি। আয়তঘনটির সমগ্রতলের ক্ষেত্রফল 1300 বর্গসেমি, আয়তঘনটির দৈর্ঘ্য, প্রস্থ ও উচ্চতা নির্ণয় করো।
50. পাশের চিত্রে BX ও CY যথাক্রমে ∠ABC ও ∠ACB এর সমদ্বিখণ্ডক। AB=AC এবং BY=4 সেমি হলে AX এর দৈর্ঘ্য নির্ণয় করো।
(a) 4 সেমি (b) 8 সেমি (c) 6 সেমি (d) 10 সেমি
51. \(a:b:c = 2:3:5\) হলে \(\cfrac{2a + 3b- 3c}{c}\) এর মান নির্ণয় করো।
(a) \(=-\cfrac{2}{5}\) (b) \(=-\cfrac{3}{5}\) (c) \(=\cfrac{2}{5}\) (d) \(=\cfrac{3}{5}\)
52. \(a∝ \cfrac{1}{c}\) এবং \(c∝\cfrac{1}{b}\) হলে \(a\) ও \(b\) এর মধ্যে ভেদ সম্পর্ক নির্ণয় করো। Madhyamik 2011
53. PQRS একটি বৃত্তস্থ চতুর্ভুজ যার QR বাহুকে T পর্যন্ত বর্ধিত করা হল। যদি ∠SRQ এবং ∠SRT কোণদ্বয়ের পরিমাপের অনুপাত 4:5 হয় তবে ∠SPQ ও ∠SRQ এর মান নির্ণয় করো।
54. \(9 tan^2θ+4cot^2θ\) এর ক্ষুদ্রতম মান নির্ণয় করো।
55. একটি আয়তঘনাকার জলাধারের তলদেশের দৈর্ঘ্য ও প্রস্থ যথাক্রমে 15 মিটার ও 12 মিটার। সেই জলাধারে পাশের পুকুর থেকে একটি পাম্প দিয়ে জল ভরা হয়। পাম্পটি যদি ঘণ্টায় 36000 লিটার জল ভরতে পারে, তবে পাম্পটি কতক্ষণ চললে জলাধারটিতে 7.2 ডেসিমিটার উচ্চতার জল জমা হবে তা নির্ণয় করো। [1 লিটার = 1 ঘন ডেসিমিটার]
56. \(x = 3+2√2\) হলে, \(\left(√x + \cfrac{1}{√x}\right)\) এর মান নির্ণয় করো।
57. ∆ABC এর ∠B = 90°, AC = √13 সেমি এবং AB+BC= 5 সেমি হলে (cos A+cos C) এর মান নির্ণয় করো।
58. যদি \(cosec^2 θ=2cotθ\) হয়, তবে \(θ\) এর মান নির্ণয় করো। [যেখানে 0°<θ<90°]
59. A এর 50% = B এর 60% = C এর \(\frac{4}{5}\) হলে A:B:C নির্ণয় করো।
60. \(u_i=\cfrac{x_i-20}{10}\) ,\(∑f_i u_i=50\), \(∑f_i=100\) হলে \(\bar{x}\) এর মান নির্ণয় করো।
61. ∆ABC-এর BC বাহুর সমান্তরাল সরলরেখা AB এবং AC বাহুকে যথাক্রমে X এবং Y বিন্দুতে ছেদ করে। AX=2.4 সেমি; AY=3.2 সেমি এবং YC=4.8 সেমি হলে AB-এর দৈর্ঘ্য নির্ণয় করো।
62. যদি \(a+b=3\) এবং \(a – b = √5\) হয় তবে \(ab\) এর মান নির্ণয় করো।
63. 21 সেমি ব্যাসার্ধ ও 21 সেমি উচ্চতাবিশিষ্ট একটি লম্ববৃত্তাকার ড্রাম এবং 21 সেমি ব্যাসার্ধবিশিষ্ট একটি নিরেট গোলক নেওয়া হল। ওই ড্রামটি সম্পূর্ণ জলপূর্ণ করে গোলকটিকে ড্রামটিতে সম্পূর্ণ ডুবিয়ে তুলে নেওয়া হল। এর ফলে এখন ড্রামের জলের গভীরতা কত হল নির্ণয় করো।
64. 10 সেমি দৈর্ঘ্যের ব্যাসার্ধের দুটি সমান বৃত্ত পরস্পরকে ছেদ করে এবং তাদের সাধারণ জ্যা এর দৈর্ঘ্য 12 সেমি। বৃত্ত দুটির কেন্দ্রদ্বয়ের মধ্যে দূরত্ব নির্ণয় করো।
65. যদি \(rcosθ = 2√3\) , \(rsinθ =2\) এবং \(0°<θ<90°\) হয়, তবে \(r\) ,ও \(θ\) এর মান নির্ণয় করো। Madhyamik 2024
66. \(∠A+∠B = 90°\) হলে \(1+\cfrac{tanA}{tanB}\)-এর মান নির্ণয় করো।
67. একটি গোলকের বক্রতলের ক্ষেত্রফল S বর্গএকক আয়তন V ঘন একক হলে S ও V এর মধ্যে সম্পর্ক নির্ণয় করো।
68. একটি অংশীদারি ব্যবসায় সমীর, ইদ্রিশ এবং অ্যান্টনির মূলধনের অনুপাত \(\frac{1}{6}:\frac{1}{5}:\frac{1}{4}\) বছরের শেষে ব্যবসায় মোট লাভ 3,700 টাকা হলে, অ্যান্টনির লাভ নির্ণয় করো।
69. যদি \(b∝a^3\) হয় এবং \(a\) এর বৃদ্ধি \(2:3\) অনুপাতে হয়, তাহলে \(b\) এর বৃদ্ধি কী অনুপাতে হয় তা নির্ণয় করো।
70. O কেন্দ্রীয় বৃত্তের 10 সেমি ও 24 সেমি দৈর্ঘ্যের দুটি সমান্তরাল জ্যা AB এবং CD কেন্দ্রের বিপরীত পার্শ্বে অবস্থিত। যদি AB ও CD জ্যা দুটির মধ্যে দূরত্ব 17 সেমি হয়, তবে বৃত্তের ব্যাসার্ধের দৈর্ঘ্য নির্ণয় করো।
71. ABCD একটি বৃত্তস্থ চতুর্ভূজ এবং O ওই বৃত্তের কেন্দ্র। যদি ∠COD=120° এবং ∠BAC=30° হয়, তবে ∠BOC ও ∠BCD এর মান নির্ণয় করো।
72. ABCD আয়তাকার চিত্রের অভ্যন্তরে O বিন্দু এমনভাবে অবস্থিত যে OB=6 সেমি, OD=8 সেমি এবং OA=5 সেমি। OC-এর দৈর্ঘ্য নির্ণয় করো। Madhyamik 2020
73. \(see5A = cosec (A+36°)\) এবং \(5A\) ধনাত্মক সূক্ষ্মকোণ হলে, \(A\)-এর মান নির্ণয় করো।
74. 4 মিটার লম্বা, 5 ডেসিমি চওড়া এবং 3 ডেসিমি পুরু একটি কাঠের লগ থেকে 2 মিটার লম্বা, 2 ডেসিমি চওড়া, 40 টি তক্তা চেরাই করা হলো। চেরাই-এর ফলে 2% কাঠ নষ্ট হয়েছে। কিন্তু এখনও লগটিতে 108 ঘনডেসিমি কাঠ রয়ে গেছে। প্রতিটি তক্তা কতটা পুরু করে চেরাই করা হয়েছিল তা নির্ণয় করো।
75. \(sin^6α+cos^6α+3sin^2 α.cos^2α \)এর মান নির্ণয় করো।
76. যদি \(tan 2A= cot(A-18°)\) হয় যেখানে \(2A\) ধনাত্মক সূক্ষ্মকোণ তাহলে \(A\) এর মান নির্ণয় করো।
77. AOB বৃত্তের একটি ব্যাস। C বৃত্তের ওপর একটি বিন্দু। ∠OBC=60° হলে ∠OCA এর মান নির্ণয় করো।
78. 13 মিটার দীর্ঘ এবং 11 মিটার প্রশস্ত একটি ছাদের জল বের হওয়ার নলটি বৃষ্টির সময় বন্ধ ছিল। বৃষ্টির পর দেখা গেল ছাদে 7 সেমি গভীর জল দাঁড়িয়ে গেছে। যে নলটি দিয়ে জল বের হয় তার ব্যাসের দৈর্ঘ্য 7 সেমি এবং চোঙাকারে মিনিটে 200 মিটার দৈর্ঘ্যের জল বের হয়। নলটি খুলে দিলে কতক্ষণে সব জল বেরিয়ে যাবে নির্ণয় করো।
79. যদি \(x ∝\cfrac{1}{y}\) এবং \(y = 10\) হলে \(x = 5\) হয়, তাহলে \(y = 5\) হলে \(x\) এর মান নির্ণয় করো।
80. \(rcosθ =1,rsinθ =√3\) হলে \(r\) ও \(θ\) এর মান নির্ণয় করো।
81. O কেন্দ্রীয় বৃত্তে PQ ও PR দুটি জ্যা। Q এবং P বিন্দুতে অঙ্কিত স্পর্শকদ্বয় S বিন্দুতে ছেদ করে। যদি ∠QSR=70° হয়, তবে ∠QPR-এর মান কত?
82. একটি গোলকের উপরিতলের ক্ষেত্রফল \(A\) ও আয়তন \(V\) হলে, \(\cfrac{A^3}{V^2}\) এর মান নির্ণয় করো।
83. ABCD বৃত্তস্থ চতুর্ভুজের AB ও DC বাহুকে বর্ধিত করায় P বিন্দুতে এবং AD ও BC বাহুকে বর্ধিত করায় Q বিন্দুতে মিলিত হয়। \(\angle\)ADC=85° এবং \(\angle\)BPC=40° হলে, \(\angle\)BAD ও \(\angle\)CQD-এর মান নির্ণয় করো।
84. ∠ABC এর ∠ABC=90° ও BD⊥AC; BD=6 সেমি ও AD=4 সেমি হলে CD এর দৈর্ঘ্য কত নির্ণয় করো।
85. যদি নিম্নলিখিত পরিসংখ্যা বিভাজন তালিকার মধ্যমা 27 হয়,তাহলে a-এর মান নির্ণয় করো:
86. পরিসংখ্যা বিভাজন তথ্যটির মধ্যমা নির্ণয় করো।
87. একচলবিশিষ্ট একটি দ্বিঘাত সমীকরণের বীজদ্বয় 2 এবং 7 হলে সমীকরণটি নির্ণয় করো।
88. সূর্যের উন্নতি কোণ 45° থেকে বৃদ্ধি পেয়ে 60° হলে একটি খুঁটির ছায়ায় দৈর্ঘ্য 3 মিটার কমে যায়। খুঁটিটির উচ্চতা নির্ণয় করো। [√3=1.732 ধরে তিন দশমিক স্থান পর্যন্ত আসন্ন মান নির্ণয় করো] Madhyamik 2018
89. একটি লম্ববৃত্তাকার শঙ্কুর আয়তন এবং পার্শ্বতলের ক্ষেত্রফলের সাংখ্যমান সমান। শঙ্কুটির উচ্চতা এবং ব্যাসার্ধের দৈর্ঘ্য যথাক্রমে \(h\) একক এবং \(r\) একক হলে, \(\left(\cfrac{1}{h^2} +\cfrac{1}{r^2}\right)\) এর মান নির্ণয় করো।
90. \(x cosθ=3, ycotθ=4\) হলে \(x\) ও \(y\) এর মধ্যে \(θ\) বর্জিত সম্পর্ক নির্ণয় করো।
91. নীচের পরিসংখ্যা বিভাজনের যৌগিক গড় 50 এবং মোট পরিসংখ্যা 120 হলে, \(f_1\) ও \(f_2\) এর মান নির্ণয় কর ।
92. \(∠A+∠B=90°\) হলে \(1+\tan A \div \tan B\) -এর মান নির্ণয় করো।
93. সমাধান না করে \('p'\) -এর যে সকল মানের জন্য \(x^2 + (p - 3)x + p = 0\) সমীকরণের বাস্তব ও সমান বীজ আছে তা নির্ণয় করো । Madhyamik 2017
94. নীচের পরিসংখ্যা বিভাজনের সংখ্যাগুরু মান নির্ণয় করো ।
95. Δ ABC -এর BC বাহুর সমান্তরাল সরলরেখা AB ও AC কে যথাক্রমে P ও Q বিন্দুতে ছেদ করে । যদি AP = 4 সেমি, QC = 9 সেমি এবং PB = AQ হয়, তাহলে PB -এর দৈর্ঘ্য নির্ণয় করো । Madhyamik 2018
96. যদি \(cos^2 θ - sin^2 θ = \cfrac{1}{2}\) হয়, তাহলে \(tan^2 θ\) -এর মান নির্ণয় করো । Madhyamik 2018
97. ABCD ট্রাপিজিয়ামের BC\(\parallel\) AD এবং AD=4 সেমি। AC ও BD কর্ণদ্বয় এমনভাবে O বিন্দুতে ছেদ করে যে, \(\frac{AO}{OC}=\frac{DO}{OB}=\frac{1}{2}\) হয়। BC-এর দৈর্ঘ্য নির্ণয় করাে। Madhyamik 2019 , 2024
98. \(sin10θ=cos8θ\) এবং \(10θ\) ধনাত্মক সূক্ষ্মকোণ হলে, \(tan9θ\)-এর মান নির্ণয় করো । Madhyamik 2019
99. প্রথম \((2n + 1)\) সংখ্যক ক্রমিক স্বাভাবিক সংখ্যার মধ্যবর্তী সংখ্যা \(\cfrac{n+103}{3}\)হলে, \(n\) -এর মান নির্ণয় করো । Madhyamik 2019
100. যদি নীচের পরিসংখ্যা বিভাজন তালিকার যৌগিক গড় 54 হয়, তবে K -এর মান নির্ণয় করো :
101. নীচের প্রদত্ত ক্রমযৌগিক পরিসংখ্যা বিভাজন ছকটি থেকে পরিসংখ্যা বিভাজন ছক তৈরি করে তথ্যটির সংখ্যাগুরুমান নির্ণয় করো :
102. \(5x^2−2x+3=0\) দ্বিঘাত সমীকরণের বীজদুটি \(α\) ও \(β\) হলে \(\cfrac{1}{α}+\cfrac{1}{β}\) এর মান নির্ণয় করো । Madhyamik 2020
103. ABC সমকোণী ত্রিভুজের ∠ABC=90∘ , AB = 3 সেমি, BC = 4 সেমি এবং B বিন্দু থেকে AC বাহুর উপর লম্ব BD যা AC বাহুর সঙ্গে D বিন্দুতে মিলিত হয় । BD এর দৈর্ঘ্য নির্ণয় করো । Madhyamik 2020
104. যদি \(u_i=\cfrac{x_i−35}{10} , Σf_iu_i=30\) এবং \(Σf_i=60\) হয়; তাহলে \(\bar{x}\) এর মান নির্ণয় করো । Madhyamik 2020
105. \(x=2+\sqrt3\) এবং \(x+y=4\) হলে \(xy+\cfrac{1}{xy}\) এর সরলতম মান নির্ণয় করো । Madhyamik 2020
106. \(6a^3b \) এবং \(24ab^3\) -এর মধ্যসমানুপাতী নির্ণয় করাে। Madhyamik 2016
107. \(\alpha\) ও \(\beta\) পরস্পর পূরক কোণ হলে, \((1 -\sin^2\alpha)\) \((1 - \cos^2\alpha)\) \((1 + \cot^2 \beta)\) \((1 + \tan^2\beta)\)-এর মান নির্ণয় করাে। Madhyamik 2016
108. y দুটি চলের সমষ্টির সমান, যার একটি x চলের সঙ্গে সরলভেদে এবং অন্যটি x-এর সঙ্গে ব্যস্ত ভেদে আছে। x= 1 হলে y = -1 এবং x = 3 হলে = 5; x ও y-এর মধ্যে সম্পর্ক নির্ণয় করাে Madhyamik 2015
109. sin (2x + y) = cos (4x – y) হলে tan 3x-এর মান নির্ণয় করাে। Madhyamik 2015
110. একটি ধনাত্মক পূর্ণসংখ্যা থেকে তার ধনাত্মক বর্গমূল বিয়ােগ করলে 110 হয়, ধনাত্মক সংখ্যাটি নির্ণয় করাে। Madhyamik 2014
111. \(x=3+\sqrt3\) এবং \(y = 6\) হলে \((x+y)^2\)-এর মান নির্ণয় করো । Madhyamik 2013
112. দুটি ক্রমিক বিজোড় সংখ্যার গুণফল 783 হলে সংখ্যা দুটি নির্ণয় করাে। Madhyamik 2013
113. \(x+\cfrac{9}{x}=6\) হলে \(x^2\)-এর সাংখ্যমান নির্ণয় করাে। Madhyamik 2013
114. ABCD বৃত্তস্থ চতুর্ভুজের AB বাহুটি বৃত্তটির ব্যাস। \(\angle\)ACD = 50° হলে \(\angle\)BAD-এর মান নির্ণয় করাে। Madhyamik 2013
115. 67° এর পূরক কোনের মান নির্ণয় করো। Madhyamik 2010
116. 4 সেমি ব্যাসার্ধবিশিষ্ট কোনো অর্ধবৃত্তের ব্যাস AB এবং \(\angle\)ACB একটি অর্ধবৃত্তস্থ কোণ । BC=2\(\sqrt7\) সেমি হলে AC এর দৈর্ঘ্য নির্ণয় করো । Madhyamik 2010
117. \(2 \cos^2\theta+3\sin \theta=3\) \((0°\lt \theta \lt 90°)\)হলে \(\theta\) এর মান নির্ণয় করা। Madhyamik 2010
118. নদীর ধারে একটি পাম গাছ আছে। ওপারে ঠিক বিপরীতে একটি খুঁটি মাটিতে পোঁতা আছে। খুঁটি থেকে নদীর ঐ পাড় বরাবর 7\(\sqrt3\) মিটার দূরে এগিয়ে গেলে গাছটির গোডা ঐ বিন্দুতে নদীর পাড়ের সঙ্গে 60° কোণ উৎপন্ন করছে । নদীটি কত চওড়া তা নির্ণয় করাে। Madhyamik 2009
119. A এর \(\cfrac{2}{3}\)=B এর 75%=C এর 0.6 হলে A:B:C নির্ণয় করো । Madhyamik 2008
120. যদি \(\sin 23°=p\) হয়, তবে \(\sin 67°\) এর মান \(p\) এর আকারে বের করো । Madhyamik 2006
121. যদি \(y∝x^3\) হয় এবং \(x\) এর বৃদ্ধি \(2:3\) অনুপাতে হয়, তাহলে \(y\) এর বৃদ্ধি কী অনুপাতে হয় তা নির্ণয় করো।
122. একটি বৃত্তে দুটি জ্যা PQ ও PR পরস্পর লম্ব। বৃত্তের ব্যাসার্ধের দৈর্ঘ্য \(r\) সেমি হলে, জ্যা QR -এর দৈর্ঘ্য নির্ণয় করাে।
123. O কেন্দ্রীয় বৃত্তের দুটি ব্যাসার্ধ OA ও OB-এর মধ্যবর্তী কোণ 130°; A ও B বিন্দুতে অঙ্কিত স্পর্শদ্বয় পরস্পরে T বিন্দুতে ছেদ করে। \(\angle\)ATB ও \(\angle\)ATO -এর মান নির্ণয় করাে।
124. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AB বৃত্তের ব্যাস। \(\angle\)AOD=140° এবং \(\angle\)CAB=50° হলে, \(\angle\)BED-এর মান নির্ণয় করাে।
125. একটি আয়তঘনের তল সংখ্যা \(x\) ধার সংখ্যা \(y\) শীর্ষবিন্দুর সংখ্যা \(z\) এবং কর্ণের সংখ্যা \(p\) হলে \((x-y+z+p)\) -এর মান নির্ণয় করাে।
126. শােলা দিয়ে তৈরি একা আকৃতির মাথার টোপরের ভূমির বাইরের দিকের ব্যাসের দৈর্ঘ্য 21 সেমি। টোপরটির উপরিভাগ। রাংতা দিয়ে মুড়তে প্রতি বর্গসেমি 10 পয়সা হিসাবে 57.75 টাকা খরচ পড়ে। টোপরটির উচ্চতা ও তির্যক উচ্চতা নির্ণয় করাে।
127. O কেন্দ্রীয় বৃত্তের ওপরে P, Q এবং R বিন্দু তিনটি এমন ভাবে অবস্থিত যে PORQ একটি সামান্তরিক হয়। \(\angle\)POR এর মান নির্ণয় করাে।
128. শঙ্কুর ভূমির ব্যাস 21 সেমি, তির্যক উচ্চতা 17.5 সেমি হলে, শঙ্কুর আয়তন নির্ণয় করাে।
129. ABCD বৃত্তস্থ চতুর্ভুজের AB \(\parallel\) DC, বৃত্তের কেন্দ্র O। \(\angle\)BOC=80°, \(\angle\)ACO=10° হলে \(\angle\)BAD-এর মান নির্ণয় করাে।
130. \(x^2-3x+5=0\) সমীকরণের বীজদ্বয় \(\alpha\) ও \(\beta\) হলে \((\alpha+\beta)\left(\cfrac{1}{\alpha^2}+\cfrac{1}{\beta^2}\right)\) এর মান নির্ণয় করাে।
131. এক অংশীদারি কারবারে A লাভের \(\cfrac{2}{3}\) অংশ পান, B ও C অবশিষ্ট লভ্যাংশ সমান ভাগে ভাগ করেন । লাভের হার 5% থেকে 7% বৃদ্ধি হলে A এর আয় 8000 টাকা বৃদ্ধি পায় । C এর মূলধন কত ?
132. \(\cfrac{sinθ+cosθ}{sinθ-cosθ} = 5\) হলে \(tanθ\) এর মান নির্ণয় করো।
133. \(\cfrac{a}{2} = \cfrac{b}{3} = \cfrac{c}{4} = \cfrac{2a-3b+4c}{p}\) হলে, \(p\) এর মান নির্ণয় করো।
134. \(x=3+2√2\) হলে, \(x+\cfrac{1}{x}\) -এর মান নির্ণয় করো।
135. ABC ত্রিভুজের AB ও AC বাহুর উপর D ও E বিন্দু এমনভাবে অবস্থিত যে DE || BC এবং AD:DB=3:1; যদি EA-3.3. সেমি হয়, তাহলে AC-এর দৈর্ঘ্য নির্ণয় করো।
136. যদি sinA+sinB=2 হয়, যেখানে 0°≤ A≤ 90° এবং 0°≤B≤ 90°, তাহলে (cos A+ cos B)-এর মান নির্ণয় করো।
137. \(\cfrac{(5+\sqrt{3})}{(5-\sqrt{3})}=x-\sqrt{15}y\) হলে \(x+y\) এর মান নির্ণয় কর।
138. \(\triangle ABC\) এর অন্তঃকেন্দ্র \(O\) এবং \(\angle BOC=120°\) হলে \(\angle BAC\)-এর মান নির্ণয় কর।
139. 14 সেমি দৈর্ঘ্যের ব্যাসার্ধবিশিষ্ট ভুগোলকের অক্ষটির বক্রতলে 0.7 সেমি দৈর্ঘ্যের ব্যাসার্ধবিশিষ্ট দুটি বৃত্তাকার ছিদ্র করা হয়েছে। ভূগোলকটির গোলাকার অংশের ধাতব পাতের ক্ষেত্রফল নির্ণয় কর।
140. AOB বৃত্তের একটি ব্যাস। C বৃত্তের উপর একটি বিন্দু। \(\angle\)OBC=55° হলে \(\angle\)OCA-এর মান নির্ণয় করো।
141. কোনো মূলধন একই বার্ষিক শতকরা সরল সুদের হারে 7 বছরে সুদে-আসলে 7,100 টাকা এবং 4 বছরে সুদে-আসলে 6,200 টাকা হলে মূলধন ও বার্ষিক শতকরা সরল সুদের হার নির্ণয় করো। Madhyamik 2022
142. নিবেদিতা ও উমা যথাক্রমে 3,000 টাকা ও 5,000 নিয়ে একটি ব্যবসা শুরু করল। 6 মাস পর নিবেদিতা আরো 4,000 টাকা দিল কিন্তু উমা 1000 টাকা তুলে নিল । এক বছর পর 6,175 টাকা লাভ হল। উভয়ের লভ্যাংশ নির্ণয় করো।
143. একটি লম্ব বৃত্তাকার চোঙের বক্রতলের ক্ষেত্রফল \(c\) বর্গএকক,ভূমির ব্যাসার্ধের দৈর্ঘ্য \(r\) একক এবং আয়তন \(v\) ঘনএকক হলে \(\cfrac{cr}{v}\) এর মান নির্ণয় করো।
144. Oকেন্দ্রীয় বৃত্তের AB ব্যাস। C বৃত্তের উপর যে কোনো একটি বিন্দু। \(\angle\)BAC=50° এবং CD,AB এর উপর লম্ব হলে \(\angle\)BCD এর মান নির্ণয় করো।
145. \(tanθ= \cfrac{x}{y}\) হলে \(\cfrac{x sinθ – y cosθ}{x sinθ+ y cosθ}\) এর মান নির্ণয় করো।
146. \(xcos60^o = \cfrac{2tan45^o}{1+tan^2 45}-\cfrac{1-tan^2 30^o}{1+tan^2 30^o}\) হলে \(x\) এর মান নির্ণয় করো।
147. একটি বৃত্তের ব্যাসার্ধের দৈর্ঘ্য 13 সেমি। ঐ বৃত্তে একটি জ্যা AB-এর দৈর্ঘ্য 10 সেমি হলে, বৃত্তের কেন্দ্র থেকে ঐ জ্যা-এর লম্ব দূরত্ব নির্ণয় করো।
148. \(0°< θ< 90°\) হলে, \((4cosec^2 θ+9 sin^2θ)\) এর সর্বনিম্ন মান নির্ণয় করো।
149. \(x=\sqrt{\cfrac{\sqrt{5}+1}{\sqrt{5}-1}}\) হলে, \(x^2-x-1\) -এর মান নির্ণয় করো।
150. কোনো মূলধন একই বার্ষিক শতকরা সরল সুদের হারে 7 বছরে সুদে-আসলে 1248 টাকা এবং 4 বছরে সুদে-আসলে 1056 টাকা হলে মূলধন ও বার্ষিক শতকরা সরল সুদের হার নির্ণয় করো।
151. \(x\cot\cfrac{π}{6}=2\cos\cfrac{π}{3}+\cfrac{3}{4} \sec^2 \cfrac{π}{4}+4\sin \cfrac{π}{6}\) হলে \(x\)-এর মান নির্ণয় করো।
152. \(\secθ -\tanθ = \cfrac{1}{2}\) হলে \(\secθ\) ও \(\tanθ\) -এর মান নির্ণয় করো।
153. যদি \(b∝a^3\) হয় এবং \(a\) এর বৃদ্ধি \(2:3\) অনুপাতে হয়, তাহলে \(b\) এর বৃদ্ধি কী অনুপাতে হয় তা নির্ণয় করো।
154. যদি \(0°< θ <90°\) হয়, তাহলে \((9 tan^2θ+4 cot^2θ)\)-এর সর্বনিম্ন মান নির্ণয় করো।
155. বছরের প্রথমে অরুণ ও আসরফ যথাক্রমে 24000 টাকা ও 30000 টাকা দিয়ে একটি যৌথ ব্যবসা শুরু করে। কয়েকমাস পরে অরুণ আরও 12000 টাকা ঐ ব্যবসায় মূলধন দেয়। বছর শেষে ওই ব্যবসায় 14300 টাকা লাভ হয় এবং অরুণ 7130 টাকা লভ্যাংশ পেল। অরুণ কত মাস পরে ব্যয়সায় টাকা দিয়েছিল তা নির্ণয় করো।
156. \(cos\theta=\cfrac{p}{\sqrt{p^2+q^2}}\)- হলে, \(tan\theta\)-এর মান নির্ণয় করাে।
(a) \(\cfrac{q}{p}\) (b) \(\cfrac{p}{q}\) (c) \(\cfrac{\sqrt{p}}{q}\) (d) কোনােটাই নয়
157. যদি \(a+\cfrac{1}{b}=1\) এবং \(b+\cfrac{1}{c}=1\) হয়, তাহলে \((c+\cfrac{1}{a})\) এবং \((abc + 1)\)-এর মান নির্ণয় করাে।
(a) 1 এবং 0 (b) 0 এবং 1 (c) 0 এবং 0 (d) 1 এবং 1
158. ABC ত্রিভুজের পরিকেন্দ্র O এবং D বিন্দু BC বাহুর মধ্যবিন্দু। \(\angle\)BAC = 40° হলে, \(\angle\)BOD-এর মান নির্ণয় কর ।
159. 7 সেমি ব্যাসের একটি লম্বা গ্যাসজারে কিছু জল আছে। ওই জলে যদি 5.6 সেমি দৈর্ঘ্যের ব্যাসের 5 সেমি লম্বা একটি নিরেট লােহার লম্ব বৃত্তাকার চোঙাকৃতি টুকরাে সম্পূর্ণ ডােবানাে হয়, তবে জলতল কতটুকু উপরে উঠবে নির্ণয় করাে।
160. একটি লম্ব বৃত্তাকার শঙ্কুর তির্যক উচ্চতা 7 সেমি এবং সমগ্রতলের ক্ষেত্রফল 147.84 বর্গসেমি। শঙ্কুটির ভূমির ব্যাসার্ধের দৈর্ঘ্য নির্ণয় করাে।
161. \(x=2+\sqrt3\) এবং \(y = 2-\sqrt3\) হলে \(3x^2+5xy+3y^2\) এর মান নির্ণয় করাে।
162. \(ax^2+bx+35=0\) সমীকরণের বীজদ্বয় -5 ও -7 হলে, \(a\) এবং \(b\) এর মান লিখি।
163. O কেন্দ্রীয় বৃত্তের AB একটি ব্যাস নয় এরূপ জ্যা। AB জ্যা এর দৈর্ঘ্য 8cm এবং বৃত্তটির ব্যাসার্ধ 5cm হলে কেন্দ্র O থেকে AB জ্যা এর দূরত্ব নির্ণয় কর।
164. ABC সমদ্বিবাহু ত্রিভুজের AB=AC; AB বাহুকে ব্যাস করে বৃত্ত অঙ্কন করলে বলছি BC বাহুকে D বিন্দুতে ছেদ করে, BD=4 সেমি হলে CD-এর দৈর্ঘ্য নির্ণয় করাে।
165. একটি বর্গাকার ভূমিবিশিষ্ট পিতলের প্লেটের দৈর্ঘ্য \(x\) সেমি, বেধ 1 মিলিমি এবং প্লেটটির ওজন 4725 গ্রাম। যদি 1 ঘনসেমি পিতলের ওজন 8.4 গ্রাম হয় তাহলে \(x\)-এর মান কত হবে তা হিসাব করে লিখি ।
166. \(\triangle\)ABC-এর \(\angle\)ABC=90° এবং BD\(\bot\)AC; যদি BD=6 সেমি এবং AD=4 সেমি হয়, তবে CD-এর দৈর্ঘ্য নির্ণয় করাে।
167. লম্ববৃত্তাকার শঙ্কু আকৃতির একটি তাঁবুর ভূমিতলের ক্ষেত্রফল 13.86 বর্গমিটার। তাঁবুটি তৈরি করতে 5775 টাকা মূল্যের একটি ত্রিপল লাগে এবং এক বর্গমিটার ত্রিপলের মূল্য 150 টাকা হলে তাঁবুটির উচ্চতা নির্ণয় করাে।
168. x, y-এর সঙ্গে সরলভেদে এবং z-এর সঙ্গে ব্যস্ত ভেদে আছে। y=4. z=5 হলে x=3 হয়। y=16, z=30 হলে, x-এর মান নির্ণয় কর?
169. 549 টাকাকে এমন দুটি ভাগে ভাগ করাে যে বার্ষিক 7% হারে প্রথম ভাগের 6 বছরের সুদ বার্ষিক 10% হারে দ্বিতীয়ভাগের 8 বছরের সুদের সমান। ভাগ দুটি নির্ণয় করাে।
(a) 320 টাকা, 229 টাকা (b) 510 টাকা, 39 টাকা (c) 360 টাকা, 189 টাকা (d) কোনােটিই নয়
170. A ও B যৌথভাবে বছরের প্রথমে যথাক্রমে 18,000 টাকা ও 21,000 টাকা দিয়ে ব্যাবসা শুরু করেন। 6 মাস পরে A আরও 3000 টাকা ব্যাবসায় বিনিয়ােগ করেন। বছরের শেষে তাদের লাভ 7200 টাকা হলে, A ও B-এর ব্যক্তিগত লাভের অনুপাত-
(a) 13 : 12 (b) 14 : 13 (c) 13: 14 (d) 14 : 11
171. একটি ব্যাবসায় A মূলধনের \(\cfrac{1}{3}\) অংশ বিনিয়ােগ করে। B, A ও C-এর মােট বিনিয়ােগের সমান নিয়ােজিত করে। 1 বছর পরে 72,000 টাকা লাভ হলে, C কত টাকা পাবে?
(a) 11,000 টাকা (b) 10,000 টাকা (c) 12,000 টাকা (d) 13,000 টাকা
172. একটি যৌথ ব্যাবসায় প্রতি মাসে ক, খ-এর তুলনায় 600 টাকা বেশি বিনিয়ােগ করে। খ 7\(\cfrac{1}{2}\) মাসের জন্য বিনিয়ােগ করেছে এবং ক, খ অপেক্ষা 2 মাস বেশি বিনিয়ােগ করেছে। এখন 620 টাকা লাভ হলে এবং খ, ক অপেক্ষা 140 টাকা কম পেলে, খ-এর মূলধনের পরিমাণ কত হবে?
(a) 2400 টাকা (b) 2700 টাকা (c) 3000 টাকা (d) 3500 টাকা
173. 2 বছর পূর্বে রামের বয়স এবং 4 বছর পরে রামের বয়সের গুণফল রামের বর্তমান বয়সের দ্বিগুণের থেকে 17 বেশি। রামের বর্তমান বয়স নির্ণয় করাে।
(a) 5 বছর (b) 7 বছর (c) 10 বছর (d) 12 বছর
174. \(3x^2 + \sqrt2x + a = 0\) সমীকরণের একটি বীজ \(\sqrt2\) হলে, \(a\)-এর মান নির্ণয় করাে।
(a) 7 (b) -8 (c) 9 (d) 8
175. যদি \(x=\cfrac{\sqrt{a+2b}+\sqrt{a-2b}}{\sqrt{a+2b}+\sqrt{a-2b}}\) হয়, তবে \(bx^2-ax+b\) -এর মান নির্ণয় করাে।
(a) 1 (b) \(0\) (c) 3 (d) 4
176. \(y, x\)-এর বর্গমূলের সঙ্গে সরলভেদে আছে এবং \(y = 9\) যখন \(x = 9\) যখন \(x\)-এর মান নির্ণয় করাে যখন \(y = 6\)
(a) 4 (b) 3 (c) 2 (d) 1
177. \(sin^2θ+\cfrac{1}{1+tan^2θ}\)-এর সরলতম মান নির্ণয় করাে।
(a) \(2\) (b) \(1\) (c) \(0\) (d) \(\sqrt3\)
178. একটি বৃত্তের ব্যাসের দৈর্ঘ্য 20 সেমি। যদি কেন্দ্র থেকে কোনাে জ্যা এর দূরত্ব ৪ সেমি হয়, তা হলে জ্যাটির দৈর্ঘ্য নির্ণয় করো।
179. অর্ধগােলাকৃতি একটি বাটি তৈরি করতে \(127\cfrac{2}{7}\)sq. cm পাত লেগেছে । বাটির মুখের ব্যাসের দৈর্ঘ্য ও বাটিতে কতটা জল ধরে নির্ণয় করাে।
180. 40টি গােরু 20 দিনে 370 টাকার ঘাস খায়। 111 টাকার ঘাস কয়টি গােরু 30 দিনে খেতে পারবে? (ভেদ তত্ত্বের সাহায্যে নির্ণয় করাে)
181. \(x \propto y^2\) এবং \(y = 2a\) যখন \(y = a, x\) ও \(y\)-এর মধ্যে সম্পর্ক নির্ণয় করাে।
182. 5 সেমি দৈর্ঘ্যের ব্যাসার্ধের একটি বৃত্তে AB ও AC দুটি সমান দৈর্ঘ্যের জ্যা। বৃত্তটির কেন্দ্র, ABC ত্রিভুজের বাইরে। অবস্থিত। যদি AB=AC=6cm হয়। তবে BC জ্যা এর দৈর্ঘ্য নির্ণয় করাে।
183. \(5x^2+2x+3=0\) দ্বিঘাত সমীকরণের বীজদ্বয় \(\alpha\) ও \(\beta\) হলে \(\cfrac{\alpha^2}{\beta}+\cfrac{\beta^2}{\alpha}\) এর মান নির্ণয় করাে।
184. লম্ববৃত্তাকার শঙ্কু আকৃতির একটি তাঁবু ভূমিতলের ক্ষেত্রফল 13.86 বর্গমিটার। তাঁবুটি তৈরি করতে 5775 টাকা মূল্যের একটি ত্রিপল . লাগে এবং এক বর্গমিটার ত্রিপলের মূল্য 150 টাকা হলে, তাঁবুটির উচ্চতা নির্ণয় করাে। তাঁবুটিতে কত লিটার বায়ু ধরে?
185. একটি নিরেট গােলকের বক্রতলের ক্ষেত্রফল \(s\) এবং আয়তন \(v\) হলে \(\cfrac{s^3}{v^2}\) এর মান নির্ণয় করাে ।
186. একটি লম্ব বৃত্তাকার চোঙের বক্রতলের ক্ষেত্রফল \(C\) বর্গএকক,ভূমির ব্যাসার্ধের দৈর্ঘ্য \(r\) একক এবং আয়তন \(V\) ঘনএকক হলে \(\cfrac{Cr}{V}\) এর মান নির্ণয় করো।
187. 2, 4, 6 ও 10 এর প্রত্যেকের সঙ্গে কোন সংখ্যা যােগ করলে যােগফলগুলি সমানুপাতী হবে, তা নির্ণয় করাে।
188. \(\triangle\)ABCএর অন্তর্বত্তের কেন্দ্র O বৃত্তটি AB, BC, CA বাহুকে যথাক্রমে P, Q, ও R বিন্দুতে স্পর্শ করে। যদি AP=4cm, BP=6cm, AC=12cm এবং BC=x cm হয়, তাহলে x এর মান নির্ণয় করাে।
189. তিনটি তেলের ড্রামে 800 লিটার, 725 লিটার এবং 575 লিটার তেল ছিল। তিনটি ড্রামের তেল একটি আয়তঘনাকার পাত্রে ঢালা হলাে। এতে পাত্রে তেলের গভীর হলাে 7 ডেসিমি। ঐ বড় পাত্রের দৈর্ঘ্য প্রস্থ = 4:3 হলে, পাত্রের দৈর্ঘ্য ও প্রস্থ নির্ণয় করাে।
190. নবচিয়াদা গ্রামের যে সব পরিবারে জল সংযােগ নেই তাদের বাড়িতে জল পোঁছানাের পরিকল্পনা গ্রহণ করা হয়। এই গ্রামে 1,200 পরিবারের জল সংযােগ নেই। প্রতি বছর যদি পূর্ব বছরের তুলনায় 75% জল সংযােগহীন পরিবারে জল পোঁছানাের ব্যবস্থা গ্রহণ করা হয়, তবে 2 বছর পর ঐ গ্রামে জল সংযােগহীন পরিবারের সংখ্যা নির্ণয় করাে।
191. \(x=2+\sqrt3\) এবং \(y = 2-\sqrt3\) হলে \(3x^2-5xy+3y^2\) এর সরলতম মান নির্ণয় করাে।
192. 16 সেমি দৈর্ঘ্যের ব্যাস বিশিষ্ট একটি বৃত্তের কেন্দ্র থেকে 17 সেমি দূরে অবস্থিত বহিঃস্থ একটি বিন্দু থেকে অঙ্কিত স্পর্শকের দৈর্ঘ্য নির্ণয় করাে।
193. O কেন্দ্রীয় বৃত্তের AOB ব্যাস। \(\angle\)BCE=20°, \(\angle\)CAE=25° হলে, \(\angle\)AEC-এর মান নির্ণয় করাে-
(a) 50° (b) 90° (c) 45° (d) 20°
194. O কেন্দ্রীয় বত্তের AC ব্যাস এবং DC||EB, \(\angle\)AOB=80° এবং \(\angle\)ACE=10° হলে, \(\angle\)BEDএর মান নির্ণয় করাে।
195. একটি লম্ব-বৃত্তাকার শঙ্কুর তির্যক উচ্চতা 7 সেমি এবং সমগ্রতলের ক্ষেত্রফল 147.84 বর্গসেমি হলে শঙ্কুর ভূমির ব্যাসার্ধ নির্ণয় করাে।
196. যদি \(\triangle\)ABC এর BC||DE, \(\frac{AD}{DB}=\frac{2}{5}\) এবং AC=21 সেমি হয় তবে AE এর মান নির্ণয় করাে।
197. 21 সেমি দৈর্ঘ্যের ব্যাসার্ধ ও 2i উচ্চতা বিশিষ্ট একটি লম্ব বৃত্তাকার ড্রাম এবং 21 সেমি দৈর্ঘ্যের ব্যাসবিশিষ্ট একটি নিরেট লােহার গােলক নিলাম। ওই ড্রাম ও নিরেট লােহার গােলকটির আয়তনের অনুপাত হিসাব করে নির্ণয় করাে। (ড্রামের বেধ অগ্রাহ্য) এবার ড্রামটি সম্পূর্ণ জলপূর্ণ করে ওই গােলকটি ড্রামটিতে সম্পূর্ণ ডুবিয়ে তুলে নিলাম, এর ফলে ড্রামে জলের গভীরতা কত হল এখন তা নির্ণয় করাে।
198. কোনাে মূলধন 4% সরলসুদে যে সময়ে 14,000 টাকা হয়, সেই সময়ে 9000 টাকা 7% সুদে 12,150 টাকা হয়। মূলধন নির্ণয় করাে।
199. \(5x^2+2x-3=0\) দ্বিঘাত সমীকরণের বীজদ্বয় \(\alpha\) ও \(\beta\) হলে \(\cfrac{\alpha^2}{\beta}+\cfrac{\beta^2}{\alpha}\) এর মান নির্ণয় করাে।
200. একটি সমকোণী চৌপলের আয়তন 432 ঘনসেমি। এর থেকে দুটি সমান মাপের ঘনক তৈরি করা হলে প্রতিটি ঘনকের বাহুর দৈর্ঘ্য নির্ণয় করাে।
201. একটি যৌথ ব্যবসায় A, B ও C যথাক্রমে 3000 টাকা, 4000 টাকা ও 5000 টাকা দিয়ে একটি ব্যবসা শুরু করল। ব্যবসায় B এর লাভ 275 টাকা হলে, ব্যবসায় মােট লাভ-
(a) 550 টাকা (b) 500 টাকা (c) 750 টাকা (d) 825 টাকা
202. O কেন্দ্রীয় একটি বৃত্তের ব্যাসের দৈর্ঘ্য 26 সেমি। O বিন্দু থেকে PQ জ্যাএর দূরত্ব 5 সেমি। PQ জ্যা-এর দৈর্ঘ্য নির্ণয় করাে।
203. \(y, x\)-এর বর্গমূলের সঙ্গে সরলভেদে আছে এবং \(y=9\) যখন \(x=9\) ; \(x\)-এর মান নির্ণয় করাে যখন \(y = 6\)
204. \(x=\sqrt5+2\) হলে, \(x^3-\cfrac{1}{x^3}\)-এর মান নির্ণয় করাে।
205. \(3x^2+8x+2=0\) সমীকরণের বীজদ্বয় \(\alpha\) এবং \(\beta\) হলে \(\cfrac{1}{\alpha^2}+\cfrac{1}{\beta^2}\) এর মান নির্ণয় করাে।
206. ABCD ট্রাপিজিয়ামের AB||DC এবং AD ও BC বাহুর ওপর P ও Q দুটি বিন্দ এমনভাবে অবস্থিত যে PQ||DC; যদি PD=18 সেমি, BQ= 35 সেমি QC=15 সেমি হয় তাহলে AD এর দৈর্ঘ্য নির্ণয় করাে।
207. বিমলবাবু তাঁর 12 বছরের ছেলে এবং 14 বছরের মেয়ের জন্য 1,87,500 টাকা ব্যাঙ্কে বার্ষিক 5% সরল সুদের হার এমনভাবে জমা রাখলেন যাতে, উভয়ের বয়স যখন 18 বছর হবে তারা প্রত্যেকে সুদে আসলে সমান টাকা পাবে। তিনি তাঁর ছেলে ও মেয়ের জন্য ব্যাঙ্কে কত টাকা করে জমা রেখেছিলেন তা নির্ণয় করাে।
208. \(a \propto b^2\) ও \(1+b \propto 6\) এবং যদি \(a=1\) হলে \(c=9\) ও \(b =5\) হয় c -এর মান নির্ণয় করাে।
209. A ও B একটি ব্যবসায়, বছরের শুরুতে যথাক্রমে 24,000 টাকা ও 30,000 টাকা বিনিয়ােগ করে। 5 মাস পর A আরও 4000 টাকা দেয়। যদি বাৎসরিক লাভ 27,716 টাকা হয়, তাহলে প্রত্যেকের লভ্যাংশ নির্ণয় করাে।
210. একটি ট্রেন 200 কি.মি. সমবেগে যায়। যদি এর বেগ 5 কিমি / ঘণ্টা বৃদ্ধি পায়। তাহলে ট্রেনটি একই দূরত্ব যেতে 2 ঘণ্টা কম সময় নেয়। ট্রেনটির গতিবেগ নির্ণয় করাে।
211. \(x^2-x=k(2x-1)\) সমীকরণের বীজদ্বয় সমান ও বিপরীত চিহ্নযুক্ত হলে \(k\) এর মান নির্ণয় করাে।
212. AOB বৃত্তের ব্যাস। AC ও BD দুটি জ্যাকে গত করলে E বিন্দুতে মিলিত হয়। \(\angle\)COD=40° হলে \(\angle\)CED এর মান নির্ণয় করো ।
213. \(\triangle\)ABC এর \(\angle\)B=90°, BD\(\bot\)AC যদি AB=6 সেমি, BD=3 সেমি এবং CD=5.4 সেমি হয় তবে BC বাহুর দৈর্ঘ্য নির্ণয় করাে।
214. একটি দ্বিঘাত সমীকরণের বীজদ্বয় \((-5), (-7)\) হলে, সমীকরণটি নির্ণয় করাে।
215. কোন বৃত্তের ব্যাসার্ধ \(\sqrt2a\) এবং কেন্দ্র থেকে একটি জ্যা-এর দূরত্ব \(a\) হলে, জ্যা-এর দৈর্ঘ্য নির্ণয় করাে।
216. একটি সম্মেলনে আগত প্রতিনিধিদের প্রত্যেকে বিদায়কালে পরস্পর পরস্পরের স্বাক্ষর সংগ্রহ করলেন। এর ফলে মােট স্বাক্ষরের সংখ্যা হলাে 420। সম্মেলনে আগত প্রতিনিধির সংখ্যা নির্ণয় করাে।
217. \(\triangle\)ABC এর পরিকেন্দ্র O এবং \(\angle\)BAC=65° হলে \(\angle\)OBC এর মান নির্ণয় করাে।
218. তিন অঙ্ক বিশিষ্ট একটি সংখ্যার শতকের অঙ্ক দশকের অঙ্কের দ্বিগুণ এবং এককের অঙ্কের চারগুণ। সংখ্যাটি উল্টে লেখাতে মান 297 হ্রাস পেলাে। সংখ্যাটি নির্ণয় করাে।
219. \(x=\cfrac{2\sqrt{15}}{\sqrt5+\sqrt3}\) হলে, \(\cfrac{x+\sqrt3}{x-\sqrt3}+\cfrac{x+\sqrt5}{x-\sqrt5}\) এর মান নির্ণয় করাে।
220. কোনাে বৃত্তের একটি জ্যা-এর দৈর্ঘ্য 14 সেমি এবং কেন্দ্র থেকে ঐ জ্যা-এর দূরত্ব 24 সেমি। বৃত্তের ব্যাসার্ধের দৈর্ঘ্য নির্ণয় করাে।
221. দুটি সমকোণী চৌপলের বাহুগুলির দৈর্ঘ্য যথাক্রমে ৪ সেমি, 12 সেমি, 15 সেমি, 6, (2h-1) সেমি 16 সেমি। সমকোণী চৌপল দুটির আয়তন সমান হলে, h এর মান নির্ণয় করাে।
222. 6500 টাকার বছরের সমূল চক্রবৃদ্ধি 7865 টাকা হলে বার্ষিক চক্রবৃদ্ধি সুদের হার নির্ণয় করাে।
223. \(\cfrac{a}{2}=\cfrac{b}{3}=\cfrac{c}{4}=\cfrac{2a-3b+4c}{p}\) হলে, \(p\) -এর মান নির্ণয় করাে।
224. পাশের চিত্রে, LM || AB এবং AL= (x-3) একক, AC = 2x একক, BM = (x-2) একক এবং BC= (2x + 3) একক হলে, x-এর মান নির্ণয় করাে।
225. \(x:y =3:4\) হলে, \((3y-x) : (2x+y)\)-এর মান নির্ণয় করাে।
226. A, B, C কেন্দ্রবিশিষ্ট তিনটি বৃত্ত পরস্পরকে বহিঃস্পর্শ করে। যদি AB=5 সেমি, BC=7 সেমি ও CA=6 সেমি হয় তাহলে C কেন্দ্র বিশিষ্ট বৃত্তের ব্যাসার্ধ নির্ণয় করাে।
227. \(ax^2+bx+c=0\) সমীকরণের বীজ দুটি \(\alpha\) ও \(\beta\) হলে \(\left(1+\cfrac{\alpha}{\beta}\right)\left(1+\cfrac{\beta}{\alpha}\right)\) -এর মান নির্ণয় করাে।
228. 10 সেমি দৈর্ঘ্যের ব্যাসার্ধের দুটি সমান বৃত্ত পরস্পরকে ছেদ করে এবং তাদের সাধারণ জ্যা-এর দৈর্ঘ্য 12 সেমি। বৃত্তদুটির কেন্দ্রদ্বয়ের মধ্যে দূরত্ব নির্ণয় করো।
229. একটি নিরেট লম্ববৃত্তাকার শঙ্কুর তির্যক উচ্চতা 7 সেমি এবং সমগ্রতলের ক্ষেত্রফল 147.84 বর্গসেমি। শঙ্কটির ভূমির ব্যাসার্ধের দৈর্ঘ্য নির্ণয় করো।
230. 48 মিঃ লম্বা এবং 31.5 মিঃ চওড়া একখণ্ড নীচু জমিকে 6.5 ডেসিমি উঁচু করা হয়েছে। এর জন্য পাশের 27 মিটার লম্বা এবং 18.2 মিঃ চওড়া একটি জমি থেকে গর্ত করে মাটি তোলা হবে। গর্তটি কত মিটার গভীর করতে হবে?
231. ক্রম বিচ্যুতি পদ্ধতির সাহায্যে নীচের তথ্যের যৌগিক গড় নির্ণয় করো।
232. যদি নীচের তথ্যের মধ্যমা 28.5 হয়, এবং পরিসংখ্যার সমষ্টি 60 হয়, তাহলে x ও y-এর মান নির্ণয় করি।
233. যদি\( a \propto b, b \propto \cfrac{1}{c}\), এবং \(c \propto d\) হয়। \( a\) ও \(d\) এর মধ্যে ভেদ সম্পর্ক নির্ণয় করো।
234. \((a+b) : \sqrt{ab} = 2:1, a:b\) এর মান নির্ণয় করো।
235. x এর মান নির্ণয় করো, যেখানে O বৃত্তের কেন্দ্র এবং AB বৃত্তটির ব্যাস।
236. যদি BC||AD, \(\angle\)CDE=80°, \(\angle\)CBD=30°, \(\angle\)ABD, \(\angle\)ACD, \(\angle\)BAD এর মান নির্ণয় করো।
237. যদি DE|| BC এবং BD=(x-3) সেমি, AB=2x সেমি, CE=(x-2) সেমি এবং AC = (2x+3) সেমি। x এর মান নির্ণয় করো।
238. যদি \(cot 67\frac{1^o}{2} = x (>0)\) হয় \(sin 22\frac{1^o}{2}\) মান নির্ণয় করো।
239. একটি নিরেট রডের দৈর্ঘ্য \(h\) মিটার এবং ব্যাস \(r\) মিটার। গলিয়ে 6টি \(r\) মিটার ব্যাসার্ধের গোলক তৈরি করা হল। \(h\) এবং \(r\) এর মধ্যে সম্পর্ক নির্ণয় করো।
240. \(x^2-x=k(2x-1)\) সমীকরণের বীজদ্বয়ের সমষ্টি শূন্য হলে, \(k\)-এর মান নির্ণয় করো।
241. AOB বৃত্তের একটি ব্যাস। C বৃত্তের ওপর একটি বিন্দু। \(\angle\)OBC=60° হলে \(\angle\)OCA এর মান নির্ণয় করো।
242. ধূমপান বিরোধী প্রচারের ফলে প্রতি বছর ধুমপায়ী সংখ্যা \(6 \cfrac{1}{4}\%\) হারে হ্রাস পায়। বর্তমান কোনো শহরে 33,750জন ধূমপায়ী থাকলে, 3 বছর পূর্বে ওই শহরে কতজন ধূমপায়ী ছিল, তা নির্ণয় করো।
243. যদি নীচের তথ্যের মধ্যমা 28.5 হয়, এবং পরিসংখ্যার সমষ্টি 60 হয়, তাহলে x ও y-এর মান নির্ণয় করি।
244. একটি লম্ব বৃত্তাকার চোঙের বক্রতলের ক্ষেত্রফল \(C\) বর্গএকক,ভূমির ব্যাসার্ধের দৈর্ঘ্য \(r\) একক এবং আয়তন \(V\) ঘনএকক হলে \(\cfrac{Cr}{V}\) এর মান নির্ণয় করো।
245. একটি লম্ববৃত্তাকার শঙ্কুর তির্যক উচ্চতা 7 সেমি এবং সমগ্রতলের ক্ষেত্রফল 147.84 বর্গসেমি, শঙ্কুটির ভূমির ব্যাসার্ধের দৈর্ঘ্য নির্ণয় করো।
246. যদি নীচের তথ্যের মধ্যমা 28.5 হয়, এবং পরিসংখ্যার সমষ্টি 60 হয়, তাহলে x ও y-এর মান নির্ণয় করি।
247. নীচে প্রদত্ত মানসমূহের যৌগিক গড় \(9.5\) হলে \(x\) এর মান নির্ণয় করো : \(12, 6, 7, 3, x, 10, 18, 5\)
248. পাশের চিত্রে LM || AB এবং AL= (x – 3) একক, AC = 2x একক, BM = (x-2) একক এবং BC=(2x+3) একক হলে x এর মান নির্ণয় করো।
249. \(x^2-x=k(2x-1)\) দ্বিঘাত সমীকরণের বীজদ্বয়ের সাংখ্যমান সমান কিন্তু বিপরীত চিহ্নবিশিষ্ট হলে, \(k\)-এর মান নির্ণয় করো।
250. যদি নীচের পরিসংখ্যা বিভাজন তালিকার যৌগিক গড় 54 হয়, তবে K -এর মান নির্ণয় করো :
251. 10 সেমি দৈর্ঘ্যের ব্যাসার্ধের দুটি সমান বৃত্ত পরস্পরকে ছেদ করে এবং তাদের সাধারণ জ্যা-এর দৈর্ঘ্য 12 সেমি। বৃত্ত দুটি কেন্দ্রদ্বয়ের মধ্যে দূরত্ব নির্ণয় করো।
252. একটি লম্ববৃত্তাকার শঙ্কুর তির্যক উচ্চতা 7 সেমি এবং সমগ্রতলের ক্ষেত্রফল 147.84 বর্গসেমি। শঙ্কুটির ভূমির ব্যাসার্ধ ও ভূমির ক্ষেত্রফল নির্ণয় করো।
253. \(\triangle\)ABC এর AC এবং BC বাহু দুটির উপর যথাক্রমে L এবং M দুটি বিন্দু এমনভাবে অবস্থান করে যাতে LM \(\parallel\) AB এবং AL = (x - 2 ) একক, AC = 2x + 3 একক, BM = (x - 3 ) একক এবং BC = 2x একক, তবে x এর মান নির্ণয় করো। Madhyamik 2023
254. যদি একটি বৃত্তের ব্যাসার্ধ 7 সেমি হয় তবে ঐ বৃত্তে 5.5 সেমি দৈর্ঘ্যের বৃত্তচাপ দ্বারা গঠিত কেন্দ্রস্থ কোণটির বৃত্তীয় মান নির্ণয় করো। Madhyamik 2023
255. \(\cfrac{a}{1-a}+\cfrac{b}{1-b}+\cfrac{c}{1-c} = 1\) হলে, \(\cfrac{1}{1-a}+\cfrac{1}{1-b}+\cfrac{1}{1-c}\) এর মান নির্ণয় করো। Madhyamik 2022
256. যদি \(a =\cfrac{\sqrt5+1}{\sqrt5-1}\) এবং \(ab = 1\) হয়, তবে \(\left(\cfrac{a}{b}+\cfrac{b}{a}\right)\) - এর মান নির্ণয় করো। Madhyamik 2022
257. AOB বৃত্তের একটি ব্যাস যার কেন্দ্র O, C বৃত্তের উপর একটি বিন্দু। \(\angle\)OBC = 60° হলে \(\angle\)OCA এর মান নির্ণয় করো। Madhyamik 2022
258. কোনো ব্যবসাতে A, B, C এর মূলধানের অনুপাত \(\cfrac{1}{x}:\cfrac{1}{y}:\cfrac{1}{z}\) বছরের শেষে ব্যবসাতে \(z\) টাকা ক্ষতি হয়েছে। C এর ক্ষতির পরিমাণ নির্ণয় করো। Madhyamik 2022
259. \(x^2-x=k(2x-1)\) সমীকরণের বীজদ্বয়ের সমষ্টি 2 হলে, K-এর মান নির্ণয় করো। Madhyamik 2023
260. যদি \(b∝a^2\) হয় এবং \(a\) এর বৃদ্ধি \(2:3\) অনুপাতে হয়, তাহলে \(b\) এর বৃদ্ধি কী অনুপাতে হয় তা নির্ণয় করো। Madhyamik 2023
261. দুটি বৃত্ত পরস্পরকে C বিন্দুতে বহিঃস্পর্শ করে। বৃত্ত দুটির একটি সাধারণ স্পর্শক AB বৃত্ত দুটিকে A ও B বিন্দুতে স্পর্শ করে। \(\angle\)ACB এর মান নির্ণয় করো। Madhyamik 2023
262. \(tan 2A = cot (A - 30° )\) হলে, \(sec ( A \) \(+ 20°)\) এর মান নির্ণয় করো। Madhyamik 2023
263. একটি লম্ব বৃত্তাকার শঙ্কুর আয়তন \(V\) ঘন একক, ভূমিতলের ক্ষেত্রফল \(A\) বর্গ একক এবং উচ্চতা \(H\) একক হলে \(\cfrac{AH}{3V}\) এর মান নির্ণয় করো। Madhyamik 2023
264. ঊর্ধ্বক্রমে সাজানো \(6, 8, 10, 12, 13, x\) তথ্যের গড় ও মধ্যমা সমান হলে \(x\) এর মান নির্ণয় করো। Madhyamik 2023
265. ABCD একটি বৃত্তস্থ চতুর্ভুজ। \(\angle\)DAB এবং \(\angle\)BCD এর সমদ্বিখন্ডকদ্বয় বৃত্তকে যথাক্রমে X ও Y বিন্দুতে ছেদ করেছে। O বৃত্তটির কেন্দ্র হলে \(\angle\)XOY এর মান নির্ণয় করো। Madhyamik 2023
266. \(k\) -এর কোন মানের জন্য \(7x^2+kx-3=0\) দ্বিঘাত সমীকরণের একটি বীজ \(\cfrac{2}{3}\) হবে হিসাব করে লিখি ।
267. যদি \(ax^2+7x+b=0\) দ্বিঘাত সমীকরণের দুটি বীজ \(\cfrac{2}{3}\) ও \(-3\) হয় তবে \(a\) ও \(b\) -এর মান নির্ণয় করি ।
268. \(ax^2+bx+35=0\) সমীকরণের বীজদ্বয় -5 ও -7 হলে, \(a\) এবং \(b\) এর মান লিখি।
269. \(5x^2+2x-7=0\) এই সমীকরণে শ্রীধর আচার্যের সূত্র প্রয়োগ করে \(x=\cfrac{k±12}{10}\) পাওয়া গেলে \(k\) এর মান কী হবে হিসাব করে লিখি ।
270. \(m\) এর মান কত হলে, \(4x^2+4(3m-1)x+(m+7)=0\) দ্বিঘাত সমীকরণের বীজ দুটি পরস্পর অন্যোন্যক হবে ।
271. \(x\) -এর প্রাপ্ত মানদুটি অর্থাৎ \(x=10\) এবং \(x=-7\); \(x^2-3x-70=0\) সমীকরনটি সিদ্ধ করে কিনা যাচাই করি ।
272. যদি কোনো বৃত্তের একটি জ্যা এর দৈর্ঘ্য 48 সেমি এবং কেন্দ্র থেকে ওই জ্যা এর দূরত্ব 7 সেমি হয়, তবে ওই বৃত্তের কেন্দ্র থেকে যে জ্যা-এর দূরত্ব 20 সেমি সেই জ্যা এর দৈর্ঘ্য কত হবে তা হিসাব করে লিখি ।
273. 17 সেমি. দৈর্ঘ্যের ব্যাসার্ধবিশিষ্ট বৃত্তের যে জ্যা-এর কেন্দ্র থেকে দূরত্ব ৪ সেমি., তার দৈর্ঘ্য হিসাব করে লিখি।
274. একটি চা-এর বাক্সের ভেতরের দৈর্ঘ্য প্রস্থ ও উচ্চতা যথাক্রমে 7.5 ডেসিমি, 6 ডেসিমি এবং 5.4 ডেসিমি । চা ভর্তি বাক্সটির ওজন 52 কিগ্রা 350 গ্রাম। কিন্তু খালি অবস্থায় বাক্সটির ওজন 3.75 কিগ্রা হলে, 1 ঘন ডেসিমি চা-এর ওজন কত হবে তা হিসাব করে লিখি।
275. একটি বর্গাকার ভূমিবিশিষ্ট পিতলের প্লেটের দৈর্ঘ্য x সেমি, বেধ 1 মিলিমি এবং প্লেটটির ওজন 4725 গ্রাম। যদি 1 ঘনসেমি পিতলের ওজন 8.4 গ্রাম হয় তাহলে x-এর মান কত হবে তা হিসাব করে লিখি ।
276. p:q=5:7 এবং p-q=-4 হলে, 3p+4q এর মান নির্ণয় করি ।
277. কোন সংখ্যা 4:7 অনুপাতের পূর্বপদের সঙ্গে যোগ এবং উত্তরপদ থেকে বিয়োগ করলে উৎপন্ন অনুপাতটির মান 2:3 ও 5:4 -এর যৌগিক অনুপাত হবে ।
278. 23,30,57 এবং 78-এর প্রত্যেকটি থেকে কত বিয়োগ করলে বিয়োগফলগুলি সমানুপাতী হবে নির্ণয় করি ।
279. \(x,12,y,27\) ক্রমিক সমানুপাতী হলে, \(x\) ও \(y\)-এর ধনাত্মক মান নির্ণয় করি।
280. PQ= 7.5 সেমি. ∠QPR = 45°, ∠PQR = 75°; PQ = 7.5 সেমি. ∠QPS = 60°, ∠PQS = 60°; ∆PQR ও ∆PQS এমনভাবে অঙ্কন করি যে R ও S বিন্দু যেন PQ-এর একই দিকে অবস্থিত হয়। ∆PQR-এর পরিবৃত্ত অঙ্কন করি এবং এই পরিবৃত্তের সাপেক্ষে S বিন্দুর অবস্থান তার ভিতরে, উপরে, না বাহিরে তা লক্ষ করে লিখি ও তারা ব্যাখ্যা খুঁজি।
281. ABCD একটি চতুর্ভুজ অঙ্কন করি যার AB = 4 সেমি., BC = 7 সেমি., CD = 4 সেমি., ∠ABC= 60°, ∠BCD = 60°; ∆ABC-এর পরিবৃত্ত অঙ্কন করি এবং এর কী কী বৈশিষ্ট্য লক্ষ করছি বুঝে লিখি।
282. 7 সেমি বাহুবিশিষ্ট সমবাহু ত্রিভুজ অঙ্কন করি। ওই ত্রিভুজের পরিবৃত্ত ও অন্তবৃত্ত অঙ্কন করে স্কেলের সাহায্যে পরিব্যাসার্ধের ও অন্তঃব্যাসার্ধের দৈর্ঘ্য নির্ণয় করি এবং তাদের মধ্যে কোনো সম্পর্ক আছে কিনা লিখি।
283. পাশের চিত্রের O কেন্দ্রীয় বৃত্তের \(\angle\)APB = 80° হলে, \(\angle\)AOB ও \(\angle\)COD-এর মানের সমষ্টি নির্ণয় করি ও উত্তরের সপক্ষে যুক্তি দিই।
284. পাশের চিত্রে O বৃত্তের কেন্দ্র। \(\angle\)OAB = 40°, \(\angle\)ABC= 120°, \(\angle\)BCO = y° এবং \(\angle\)COA = x° হলে, x ও y-এর মান নির্ণয় করি।
285. ABC ত্রিভুজের পরিকেন্দ্র O এবং D বিন্দু BC বাহুর মধ্যবিন্দু। \(\angle\)BAC = 40° হলে, \(\angle\)BOD-এর মান নির্ণয় করি।
286. O কেন্দ্রীয় বৃত্তের উপর A, B, C তিনটি বিন্দু এমনভাবে অবস্থিত যে AOCB একটি সামান্তরিক। \(\angle\)AOC-এর মান নির্ণয় করি।
287. পাশের ছবিতে \(\angle\)DBA = 40°, \(\angle\)BAC = 60° এবং\(\angle\)CAD=20°; \(\angle\)DCA ও \(\angle\)BCA-এর মান নির্ণয় করি। \(\angle\)BAD ও \(\angle\)DCB-এর মানের সমষ্টি কত হবে হিসাব করে দেখি।
288. পাশের চিত্রে O বৃত্তের কেন্দ্র, AC ব্যাস এবং জ্যা DE ও ব্যাস AC সমান্তরাল। \(\angle\)CBD = 60° হলে, \(\angle\)CDE-এর মান নির্ণয় করি।
289. পাশের চিত্রে \(\angle\)PQR-এর সমদ্বিখণ্ডক QS; \(\angle\)SQR = 35° এবং \(\angle\)PRQ = 32° হলে , \(\angle\)QSR-এর মান নির্ণয় করি।
290. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AB ব্যাস। AB ও CD পরস্পর লম্ব এবং \(\angle\)ADC= 50° ; \(\angle\)CAD-এর মান নির্ণয় করি।
291. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AB = AC; \(\angle\)ABC = 32° হলে , \(\angle\)BDC-এর মান নির্ণয় করি।
292. পাশের চিত্রে BX ও CY যথাক্রমে \(\angle\)ABC ও \(\angle\)ACB-এর সমদ্বিখণ্ডক। AB = AC এবং BY = 4 সেমি. হলে, AX-এর দৈর্ঘ্য নির্ণয় করি।
293. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AB ব্যাস। \(\angle\)BCE = 20° , \(\angle\)CAE = 25° হলে , \(\angle\)AEC-এর মান নির্ণয় করি।
294. ABC সমদ্বিবাহু ত্রিভুজের AB = AC; AB বাহুকে ব্যাস করে বৃত্ত অঙ্কন করলে বৃত্তটি BC বাহুকে D বিন্দুতে ছেদ করে, BD = 4 সেমি. হলে CD-এর দৈর্ঘ্য নির্ণয় করি।
295. একটি বৃত্তে দুটি জ্যা PQ এবং PR পরস্পর লম্ব। বৃত্তের ব্যাসার্ধের দৈর্ঘ্য r সেমি. হলে, জ্যা QR-এর দৈর্ঘ্য নির্ণয় করি।
296. AOB বৃত্তের একটি ব্যাস। C বৃত্তের উপর একটি বিন্দু। \(\angle\)OBC = 60° হলে \(\angle\)OCA-এর মান নির্ণয় করি।
297. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AB ব্যাস। জ্যা CD-এর দৈর্ঘ্য বৃত্তের ব্যাসার্ধের দৈর্ঘ্যের সমান। AC ও BD-কে বর্ধিত করায় P বিন্দুতে ছেদ করে। \(\angle\)APB-এর মান নির্ণয় করি।
298. পাশের চিত্রে O কেন্দ্রীয় বৃত্তে AB ব্যাস। C বৃত্তের উপর যে-কোনাে একটি বিন্দু। \(\angle\)BAC= 50° এবং CD, AB-এর উপর লম্ব হলে, \(\angle\)BCD-এর মান নির্ণয় করি।
299. \( 7-√3\) -এর থেকে কত বিয়োগ করলে বিয়োগফল \( 3+√3\) হবে, নির্ণয় করি ।
300. \( (-5+√7) \) এবং \((√7+√2)\) -এর যোগফল থেকে \((5+√2+√7)\) বিয়োগ করে বিয়োগফল নির্ণয় করি ।
301. 7÷√48 -এর হরের করনী নিরসন করতে হরকে ন্যূনতম কত দিয়ে গুন করতে হবে তা লিখি ।
302. (√5+√2) ÷√7=1/7 (√35+a) হলে, a-এর মান নির্ণয় করি ।
303. একটি লম্ব বৃত্তাকার শঙ্কুর তির্যক উচ্চতা 7 সেমি. এবং সমগ্রতলের ক্ষেত্রফল 147.84 বর্গ সেমি.। শঙ্কুটির ভূমির ব্যাসার্ধের দৈর্ঘ্য নির্ণয় করি।
304. লম্ব বৃত্তাকার শঙ্কু আকৃতির একটি তাবুর ভূমিতলের ক্ষেত্রফল 13.86 বর্গ মিটার। তবুটি তৈরি করতে 5775 টাকা মূল্যের একটি ত্রিপল লাগে এবং এক বর্গমিটার ত্রিপলের মূল্য 150 টাকা হলে, তবুটির উচ্চতা নির্ণয় করি। তবুটিতে কত লিটার বায়ু আছে হিসাব করে লিখি।
305. পাশের চিত্রে \(\triangle\)ABC-এর DE || BC; যদি AD = 5 সেমি., DB = 6 সেমি. এবং AE = 7.5 সেমি, হয়,তবে AC-এর দৈর্ঘ্য হিসাব করে লিখি।
306. 21 সেমি. দৈর্ঘ্যের ব্যাসার্ধ ও 21 সেমি. উচ্চতাবিশিষ্ট একটি লম্ব বৃত্তাকার ড্রাম এবং 21 সেমি. দৈর্ঘ্যের ব্যাসবিশিষ্ট একটি নিরেট লােহার গােলক নিলাম। ওই ড্রাম ও নিরেট লােহার গােলকটির আয়তন অনুপাত হিসাব করে লিখি। (ড্রামের বেধ অগ্রাহ্য করব)। এবার ড্রামটি সম্পূর্ণ জলপূর্ণ করে ওই গােলকটি ড্রামটিতে সম্পূর্ণ ডুবিয়ে তুলে নিলাম। এরফলে এখন ড্রামে জলের গভীরতা কত হলাে নির্ণয় করি।
307. θ (\(0° \le θ \le 90°\)) -এর কোন মানের জন্য sin\(^2\)θ-3sinθ+2 = 0 সত্য হবে নির্ণয় করি।
308. যে-কোনাে পদ্ধতির সাহায্যে নীচের তথ্যের যৌগিক গড় নির্ণয় করি।
309. নীচের তালিকা থেকে একটি বিদ্যালয়ের দশম শ্রেণির 52 জন ছাত্রের গড় নম্বর প্রত্যক্ষ পদ্ধতি ও কল্পিত গড় পদ্ধতিতে নির্ণয় করি।
310. যদি নীচের তথ্যের মধ্যমা 28.5 হয়, এবং পরিসংখ্যার সমষ্টি 60 হয়, তাহলে x ও y-এর মান নির্ণয় করি।
311. নীচের পরিসংখ্যা বিভাজনের মধ্যমা নির্ণয় করি।
312. আমি আমার 40 জন বন্ধুর বয়স নীচের ছকে লিখেছি,
313. যদি নীচের প্রদত্ত তথ্যের যৌগিক গড় 20.6 হয়, তবে a-এর মান নির্ণয় করি :
314. যদি নীচের পরিসংখ্যা বিভাজন তালিকার নম্বরের যৌগিক গড় 24 হয়, তবে p-এর মান নির্ণয় করি।
315. ছাত্রীদের প্রাপ্ত নম্বরের গড় নির্ণয় করি যদি তাদের প্রাপ্ত নম্বরের ক্রমযৌগিক পরিসংখ্যা নিম্নরূপ হয়:
316. নীচের তালিকার 64 জন ছাত্রের প্রাপ্ত নম্বরের গড় নির্ণয় করি।
317. মধুবাবুর দোকানের গত সপ্তাহের প্রতিদিনের বিক্রয়লব্ধ অর্থ (টাকায়) হলো, 107, 210, 92, 52, 113, 75, 195; বিক্রয়লব্ধ অর্থের মধ্যমা নির্ণয় করি।
318. আজ পাড়ার ক্রিকেট খেলায় আমাদের স্কোর হলো, 7 9 10 11 11 8 7 7 10 6 9 7 9 9 6 6 8 8 9 8 7 8 ক্রিকেট খেলায় আমাদের স্কোরের মধ্যমা নির্ণয় করি।
319. নীচের 70 জন ছাত্রের ওজনের পরিসংখ্যা বিভাজন ছক থেকে ওজনের মধ্যমা নির্ণয় করি।
320. আমাদের 40 জন শিক্ষার্থীর প্রতি সপ্তাহে টিফিন খরচের (টাকায়) পরিসংখ্যা হলো,
321. নীচের তথ্যের মধ্যমা নির্ণয় করি :
322. নিবেদিতাদের ক্লাসের 35 জন শিক্ষার্থীর ওজনের তথ্য হলো,
323. আমাদের 16 জন বন্ধুর প্রতিদিন স্কুলে যাতায়াত ও অন্যান্য খরচের জন্য প্রাপ্ত টাকার পরিমাণ, 15, 16, 17, 18, 17, 19, 17, 15, 15, 10, 17, 16, 15, 16, 18, 11 আমাদের বন্ধুদের প্রতিদিন পাওয়া অর্থের সংখ্যাগুরুমান নির্ণয় করি।
324. 8, 5, 4, 6, 7, 4, 4, 3, 5, 4, 5, 4, 4, 5, 5, 4, 3, 3, 5, 4, 6, 5, 4, 5, 4, 5, 4, 2, 3, 4
325. 15, 11, 10, 8, 15, 18, 17, 15, 10, 19, 10, 11, 10, 8, 19, 15, 10, 18, 15, 3, 16, 14, 17, 2
326. আমাদের পাড়ার একটি জুতোর দোকানে একটি বিশেষ কোম্পানির জুতো বিক্রির পরিসংখ্যা বিভাজন তালিকা হলো;
327. একটি প্রবেশিকা পরীক্ষায় পরীক্ষার্থীর বয়সের পরিসংখ্যা বিভাজন ছক থেকে সংখ্যাগুরুমান নির্ণয় করি।
328. নীচের পরিসংখ্যা বিভাজনের সংখ্যাগুরুমান নির্ণয় করি।
329. নীচের পরিসংখ্যা বিভাজনের সংখ্যাগুরুমান নির্ণয় করি।
330.
331. 150 জন অ্যাথলিট 100 মিটার হার্ডল রেস যত সেকেন্ডে সম্পূর্ণ করে তার একটি পরিসংখ্যা বিভাজনছক নীচে দেওয়া আছে।
332. একটি পরিসংখ্যা বিভাজনের গড় 8.1, \(\sum f_i x_i = 132+5k\) এবং \(\sum f_i=20\)হলে, \(k\)-এর মান নির্ণয় করি।
333. যদি \(u_i =\cfrac{x_i-25}{10} ,\sum f_i u_i=20\) এবং \(\sum f_i=100\) হয়, তাহলে \(\bar{x}\)-এর মান নির্ণয় কর ।
334. একটি নদীর একটি পাড়ের একটি তালগাছের সোজাসুজি অপর পাড়ে একটি খুঁটি পুঁতলাম। এবার নদীর পাড় ধরে ওই খুঁটি থেকে 7√3 মিটার সরে গিয়ে দেখছি নদীর পাড়ের পরিপ্রেক্ষিতে গাছটির পাদদেশ 60° কোণে রয়েছে। নদীটি কত মিটার চওড়া নির্ণয় করি।
335. আমাদের পাড়ায় রাস্তার দু-পাশে পরস্পর বিপরীত দিকে দুটি বাড়ি আছে। প্রথম বাড়ির দেয়ালের গোড়া থেকে 6 মিটার দূরে একটি মই-এর গোড়া রেখে যদি মইটিকে দেয়ালে ঠেকানো যায়, তবে তা অনুভূমিক রেখার সঙ্গে 30° কোণ উৎপন্ন করে। কিন্তু মইটিকে যদি একই জায়গায় রেখে দ্বিতীয় বাড়ির দেয়ালে লাগানো যায়, তাহলে অনুভূমিক রেখার সঙ্গে 60° কোণ উৎপন্ন করে। (i) মইটির দৈর্ঘ্য নির্ণয় করি। (ii) দ্বিতীয় বাড়ির দেয়ালের গোড়া থেকে মইটির গোড়া কত দূরে রয়েছে হিসাব করে লিখি। (iii) রাস্তাটি কত চওড়া নির্ণয় করি। (iv) দ্বিতীয় বাড়ির কত উঁচুতে মইটির অগ্রভাগ স্পর্শ করবে নির্ণয় করি।
336. সূর্যের উন্নতি কোণ 45° থেকে বৃদ্ধি পেয়ে 60° হলে, একটি খুঁটির ছায়ায় দৈর্ঘ্য 3 মিটার কমে যায়। খুঁটিটির উচ্চতা নির্ণয় করি।। [√3 = 1.732 ধরে তিন দশমিক স্থান পর্যন্ত আসন্ন মান নির্ণয় করি]।
337. একটি সমকোণী ত্রিভুজাকারক্ষেত্র ABC-এর অতিভুজ AC-এর দৈর্ঘ্য 100 মিটার এবং AB=50√3 মিটার হলে, \(\angle\)C এর মান নির্ণয় করি।
338. ABC সমকোণী ত্রিভুজ \(\angle\)B=90°, ABর উপর D এমন একটি বিন্দু যে AB: BC: BD =√3:1:1, \(\angle\)ACD -এর মান নির্ণয় করি।
339. sin 10θ = cos 8θ এবং 10θ ধনাত্মক সূক্ষ্মকোণ হলে, tan9θ -এর মান নির্ণয় করি।
340. tan 4θ × tan6θ =1 এবং 6θ ধনাত্মক সূক্ষ্মকোণ হলে, θ -এর মান নির্ণয় করি।
341. (tan 1°× tan2° × tan3°.................. tan89°) -এর মান নির্ণয় করি।
342. sec 5A = cosec (A+36°) এবং 5A ধনাত্মক সূক্ষ্মকোণ হলে, A-এর মান নির্ণয় করি।
343. \(\sin θ=\cfrac{4}{5}\) হলে, \(\cfrac{ cosecθ}{1+\cot θ}\) -এর মান নির্ণয় করে লিখি।
344. secθ + tanθ = 2 হলে, (secθ- tanθ)-এর মান নির্ণয় করি।
345. sinθ+ cosθ=1 হলে, sinθ × cosθ এর মান নির্ণয় করি।
346. tanθ+ cotθ= 2 হলে, (tanθ- cotθ)-এর মান নির্ণয় করি।
347. \(\cfrac{sinθ+cosθ}{sinθ-cosθ}=7\) হলে, tanθ-এর মান হিসাব করে লিখি।
348. \(5sin^2 \theta+4cos^2 \theta=\cfrac{9}{2}\) সম্পর্কটি থেকে \(tan \theta\)-এর মান নির্ণয় করি।
349. \(tan^2 θ+cot^2 θ= \cfrac{10}{3}\) হলে, tanθ + cotθ এবং tanθ- cotθ-এর মান নির্ণয় করি এবং সেখান থেকে tanθ-এর মান হিসাব করে লিখি।
350. PQR ত্রিভুজে ∠Q সমকোণ। PR=√5 একক এবং PQ-RQ=1 একক হলে, cosP-cosR -এর মান নির্ণয় করি।
351. XYZ ত্রিভুজে∠Y সমকোণ । XY=2√3 একক এবং XZ-YZ=2 একক হলে, (secX-tanX)-এর মান নির্ণয় করি।
352. যদি sinA+sinB=2 হয়, যেখানে 0°≤A≤90° এবং 0°≤B≤90°, তাহলে (cosA+cosB)-এর মান নির্ণয় করি।
353. যদি \(0°<θ<90°\) হয়, তাহলে \(9 \tan^2 θ+4 \cot^2 θ\)-এর সর্বনিম্ন মান নির্ণয় করি।
354. \(\sin^6 α+\cos^6 α+3\sin^2 α \cos^2 α\)-এর মান নির্ণয় করি।
355. যদি \(cosec^2 θ =2cot θ\) এবং \(0°<θ<90°\) হয়, তাহলে \(θ\) -এর মান নির্ণয় করি।
356. \(x sin 45° \) \(cos 45° \) \(tan 60° \) \(= tan^2 45°\) \(- cos60°\) হলে, \(x\)-এর মান নির্ণয় করি।
357. \(x sin 60° cos^2 30° = \cfrac{tan^2 45° sec60° }{cosec60°}\)হলে, \(x\)-এর মান নির্ণয় করি।
358. \(x^2 = sin^2 30° + 4cot^2 45° – sec^2 60°\) হলে, \(x\)-এর মান নির্ণয় করি।
359. \(θ (0° ≤ θ ≤ 90°)\) - এর কোন মান / মানগুলির জন্য \(2cos^2θ - 3cosθ +1 = 0\) সত্য হবে নির্ণয় করি।
360. একটি সমকোণী ত্রিভুজ ABC এঁকেছি যার অতিভুজ AB=10 সেমি., ভূমি BC= 8 সেমি. এবং লম্ব AC=6 সেমি.। ∠ABC-এর Sine এবং tangent-এর মান নির্ণয় করি।
361. সোমা একটি সমকোণী ত্রিভুজ ABC এঁকেছে যার ∠ABC=90°, AB=24 সেমি. এবং BC=7 সেমি.। হিসাব করে sinA, cosA, tanA ও cosecA-এর মান লিখি।
362. যদি ABC একটি সমকোণী ত্রিভুজের ∠C=90°, BC=21 একক এবং AB=29 একক হয়, তাহলে sinA, cosA, sinB ও cosB-এর মান নির্ণয় করি।
363. যদি cosθ = \(\cfrac{7}{25}\) হয়, তাহলে θ কোণের সকল ত্রিকোণমিতিক অনুপাতের মান নির্ণয় করি।
364. যদি \(cotA= \cfrac{4}{7.5}\) হয়, তাহলে \(cosA\) এবং \(cosecA\)-এর মান নির্ণয় করি এবং দেখাই যে, \(1 + cot^2 A = cosec^2 A\)
365. ABCD আয়তাকার চিত্রের অভ্যন্তরে O বিন্দু এমনভাবে অবস্থিত যে OB = 6 সেমি., OD = 8 সেমি. এবং OA = 5 সেমি.। OC-এর দৈর্ঘ্য নির্ণয় করি।
366. ABC সমকোণী ত্রিভুজের ∠ABC = 90°, AB = 3 সেমি., BC = 4 সেমি. এবং B বিন্দু থেকে AC বাহুর উপর লম্ব BD যা AC বাহুর সঙ্গে D বিন্দুতে মিলিত হয়। BD-এর দৈর্ঘ্য নির্ণয় করি।
367. পাশের চিত্রে, LM || AB এবং AL= (x-3) একক, AC = 2x একক, BM = (x-2) একক এবং BC= (2x + 3) একক হলে, x-এর মান নির্ণয় করি।
368. পাশের চিত্রে, ABC ত্রিভুজে DE || PQ || BC এবং AD=3 সেমি., DP = x সেমি., PB = 4 সেমি., AE = 4 সেমি., EQ = 5 সেমি., QC =y সেমি. হলে, x এবং y-এর মান নির্ণয় করি।
369. পাশের চিত্রে, DE || BC, BE || XC এবং \(\frac{AD}{DB}=\frac{2}{1}\) হলে, \(\frac{AX}{XB}\) -এর মান নির্ণয় করি।
370. ভূমির ব্যাসের দৈর্ঘ্য 21 মিটার এবং তির্যক উচ্চতা 17.5 মিটার।
371. লম্ব বৃত্তাকার শঙ্কু আকৃতির একটি লোহার পাতের বয়া তৈরি করতে 75 বর্গ মিটার লোহার পাত লেগেছে। বয়াটির তির্যক উচ্চতা যদি 5 মিটার হয়, তবে বয়াটিতে কত বায়ু আছে এবং বয়াটির উচ্চতা কত হিসাব করে লিখি। ওই বয়াটির চারপাশ রং করতে প্রতি বর্গ মিটার 2.80 টাকা হিসাবে কত খরচ পড়বে নির্ণয় করি। [লোহার পাতের বেধ হিসাবের মধ্যে ধরতে হবে না]
372. একটি বৃত্তের উপর অবস্থিত P ও Q বিন্দু দুটিতে অঙ্কিত স্পর্শক দুটি A বিন্দুতে ছেদ করেছে। ∠PAQ = 60° হলে ∠APQ-এর মান নির্ণয় করি।
373. পাশের চিত্রে O কেন্দ্রবিশিষ্ট বৃত্তে বহিঃস্থ বিন্দু C থেকে অঙ্কিত দুটি স্পর্শক বৃত্তকে যথাক্রমে P ও Q বিন্দুতে স্পর্শ করেছে। বৃত্তের অপর একটি বিন্দু R তে অঙ্কিত স্পর্শক CP ও CQ কে যথাক্রমে A ও B বিন্দুতে ছেদ করে। যদি,CP=11 সেমি এবং BC =7 সেমি হয়,তাহলে BR এর দৈর্ঘ্য নির্ণয় করি ।
374. বছরের প্রথমে অরুণ ও অজয় যথাক্রমে 24,000 টাকা ও 30,000 টাকা দিয়ে যৌথভাবে ব্যাবসা শুরু করেন। কিন্তু কয়েক মাস পরে অরুণ আরও 12,000 টাকা ওই ব্যবসায়ে মূলধন দেন। বছরের শেষে ওই ব্যবসায়ে 14,030 টাকা লাভ হলো এবং অরুণ 7,130 টাকা লভ্যাংশ পেলেন। অরুণ কত মাস পরে ব্যবসায়ে টাকা দিয়েছিলেন নির্ণয় করি।
375. দুটি A ও B-এর সম্পর্কিত মানগুলি
376. y, x-এর বর্গমূলের সঙ্গে সরলভেদে আছে এবং y=9 যখন x=9; x-এর মান নির্ণয় করি যখন y=6.
377. x, y-এর সঙ্গে সরলভেদে এবং z-এর সঙ্গে ব্যস্তভেদে আছে। y=5 ও z=9 হলে x= \(\frac{1}{6}\) হয়। x, y ও z-এর মধ্যে সম্পর্ক নির্ণয় করি এবং y=6 ও z= \(\frac{1}{5}\) হলে, x-এর মান হিসাব করে লিখি।
378. y দুটি চলের সমষ্টির সমান, যার একটি x চলের সঙ্গে সরলভেদে এবং অন্যটি x চলের সঙ্গে ব্যস্তভেদে আছে। x=1 হলে y=-1 এবং x=3 হলে y=5; x ও y-এর মধ্যে সম্পর্ক নির্ণয় করি।
379. \(x ∝ y^2\) এবং \(y=2a\) যখন \(x=a; x\) ও \(y\)-এর মধ্যে সম্পর্ক নির্ণয় করি।
380. \(x∝\cfrac{1}{y}\) এবং \(y∝\cfrac{1}{z}\) হলে, \(x, z\)-এর সঙ্গে সরলভেদে না ব্যস্তভেদে আছে তা নির্ণয় করি।
381. যদি \(b∝a^3\) হয় এবং \(a\)-এর বৃদ্ধি হয় \(2:3\) অনুপাতে, তাহলে \(b\)-এর বৃদ্ধি কী অনুপাতে হয় তা নির্ণয় করি।
382. ABCD বৃত্তস্থ চতুর্ভুজের AB বাহুকে X বিন্দু পর্যন্ত বর্ধিত করলাম এবং মেপে দেখছি ∠XBC = 82° এবং ∠ADB = 47°; ∠BAC-এর মান হিসাব করে লিখি।
383. পাশের চিত্রে দুটি বৃত্ত পরস্পরকে C ও D বিন্দুতে ছেদ করে। D ও C বিন্দুগামী দুটি সরলরেখা একটি বৃত্তকে যথাক্রমে A ও B বিন্দুতে এবং অপর বৃত্তকে E ও F বিন্দুতে ছেদ করে। ∠DAB = 75° হলে, ∠DEF-এর মান
(a) 75° (b) 70° (c) 60° (d) 105°
384. পাশের চিত্রে P ও Q কেন্দ্রবিশিষ্ট বৃত্তদুটি B ও C বিন্দুতে ছেদ করেছে। ACD একটি সরলরেখাংশ। ∠ARB = 150°, ∠BQD = x° হলে, x-এর মান নির্ণয় করি।
385. পাশের চিত্রে দুটি বৃত্ত পরস্পর P ও Q বিন্দুতে ছেদ করে। ∠QAD = 80° এবং ∠PDA = 84° হলে, ∠QBC ও ∠BCP-এর মান নির্ণয় করি।
386. পাশের চিত্রে ∠BAD=60°, ∠ABC=80° হলে, ∠DPC এবং ∠BQC-এর মান নির্ণয় করি।
387. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AC ব্যাস। ∠AOB = 80° এবং ∠ACE = 10° হলে, ∠BED-এর মান নির্ণয় করি।
388. পাশের চিত্রে O বৃত্তের কেন্দ্র এবং AB বৃত্তের ব্যাস। ∠AOD = 140° এবং ∠CAB = 50° হলে, ∠BED-এর মান নির্ণয় করি।
389. \(x-\cfrac{1}{x}\)
390. \(x+\cfrac{1}{x}\)
391. \(x^2+\cfrac{1}{x^2}\)
392. \(x^3+\cfrac{1}{x^3}\)
393. \(\triangle\)ABC-এর AC = BC এবং BC বাহুকে D পর্যন্ত বর্ধিত করলাম। যদি \(\angle\)ACD=144° হয়, তবে ABC ত্রিভুজের প্রতিটি কোণের বৃত্তীয় মান নির্ণয় করি।
394. ABC একটি সমদ্বিবাহু ত্রিভুজ অঙ্কন করেছি যার সমান বাহুদ্বয়ের অন্তর্ভুত কোণ ∠ABC = 45°; ∠ABC-এর সমদ্বিখণ্ডক AC বাহুকে D বিন্দুতে ছেদ করেছে। ∠ABD, ∠BAD, ∠CBD এবং ∠BCD-এর বৃত্তীয় মান নির্ণয় করি।
395. একটি কোণের ডিগ্রিতে মান \(D\) এবং ওই কোণের রেডিয়ানে মান \(R\) হলে, \(\cfrac{R}{D}\) -এর মান নির্ণয় করি।
396. একটি লম্ববৃত্তাকার শঙ্কুর উচ্চতা উহার ব্যাসার্ধের দৈর্ঘ্যের দ্বিগুণ। যদি উচ্চতা ভূমির ব্যাসের 7 গুণ হতো তবে শঙ্কুটির আয়তন 539 ঘনসেমি বেশি হত। শঙ্কুটির উচ্চতা নির্ণয় করো। Madhyamik 2023
397. নীচের পরিসংখ্যা বিভাজনের যৌগিক গড় 50 এবং মোট পরিসংখ্যা 120 হলে, \(f_1\) ও \(f_2\) এর মান নির্ণয় কর ।
398. একটি পরিসংখ্যা বিভাজনের গড় 7, \(\sum f_i x_i=140\) হলে \(\sum f_i\) এর মান নির্ণয় করো । Madhyamik 2024