1. \(x=\sqrt7+\sqrt6\) āĻšāϞ⧠\(x-\cfrac{1}{x}\) āĻāϰ āϏāϰāϞāϤāĻŽ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
2. \(x=\sqrt7+\sqrt6\) āĻšāϞ⧠\(x^2+\cfrac{1}{x^2}\) āĻāϰ āϏāϰāϞāϤāĻŽ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
3. \(x=\sqrt7+\sqrt6\) āĻšāϞ⧠\(x^3+\cfrac{1}{x^3}\) āĻāϰ āϏāϰāϞāϤāĻŽ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
4. \(m+ \cfrac{1}{m}=\sqrt{3}\) āĻšāϞā§, \(m^2+\cfrac{1}{m^2}\) - āĻāϰ āϏāϰāϞāϤāĻŽ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
5. \(m+ \cfrac{1}{m}=\sqrt{3}\) āĻšāϞā§, \(m^3+\cfrac{1}{m^3}\) - āĻāϰ āϏāϰāϞāϤāĻŽ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
6. \(x=\sqrt3+\sqrt2\) āĻšāϞ⧠\(x^3-\cfrac{1}{x^3}\) āĻāϰ āϏāϰāϞāϤāĻŽ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ āĨ¤
7. \(5x^2+2x-3=0\) āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāύā§āϰ āĻĻā§āĻāĻŋ āĻŦā§āĻ \(\alpha\) āĻ \(\beta\) āĻšāϞā§, \(Îą^2+β^2\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
8. \(5x^2+2x-3=0\) āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāύā§āϰ āĻĻā§āĻāĻŋ āĻŦā§āĻ \(\alpha\) āĻ \(\beta\) āĻšāϞā§, \(Îą^3+β^3\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
9. \(5x^2+2x-3=0\) āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāύā§āϰ āĻĻā§āĻāĻŋ āĻŦā§āĻ \(\alpha\) āĻ \(\beta\) āĻšāϞā§, \(\cfrac{1}{Îą}+\cfrac{1}{β}\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
10. \(5x^2+2x-3=0\) āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāύā§āϰ āĻĻā§āĻāĻŋ āĻŦā§āĻ \(\alpha\) āĻ \(\beta\) āĻšāϞā§, \(\cfrac{Îą^2}{β}+\cfrac{β^2}{Îą}\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
11. 5 āϏā§āĻŽāĻŋ āĻĻā§āϰā§āĻā§āϝā§āϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧā§āϰ āĻāĻāĻāĻŋ āĻŦā§āϤā§āϤ⧠AB āĻāĻŦāĻ AC āĻĻā§āĻāĻŋ āϏāĻŽāĻžāύ āĻĻā§āϰā§āĻā§āϝā§āϰ āĻā§āϝāĻžāĨ¤ āĻŦā§āϤā§āϤā§āϰ āĻā§āύā§āĻĻā§āϰ ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻŦāĻžāĻāϰ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤ AB=AC=6 āϏā§āĻŽāĻŋ āĻšāϞā§, BC āĻā§āϝāĻž-āĻāϰ āĻĻā§āϰā§āĻā§āϝ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋāĨ¤
12. P āĻ Q āĻā§āύā§āĻĻā§āϰāĻŦāĻŋāĻļāĻŋāώā§āĻ āĻĻā§āĻāĻŋ āĻŦā§āϤā§āϤ A āĻ B āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§āĨ¤ A āĻŦāĻŋāύā§āĻĻā§ āĻĻāĻŋā§ā§ PQ-āĻāϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻž āĻŦā§āϤā§āϤāĻĻā§āĻāĻŋāĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ C āĻ D āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§āĨ¤ PQ=5 āϏā§āĻŽāĻŋ āĻšāϞā§, CD-āĻāϰ āĻĻā§āϰā§āĻā§āϝ āĻāϤ āϤāĻž āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
13. p:q=5:7 āĻāĻŦāĻ p-q=-4 āĻšāϞā§, 3p+4q āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
14. \(\cfrac{a}{2}=\cfrac{b}{3}=\cfrac{c}{4}=\cfrac{2a-3b+4c}{p}\) āĻšāϞā§, \(p\)-āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋāĨ¤
15. \(\cfrac{3x-5y}{3x+5y}=\cfrac{1}{2}\) āĻšāϞā§, \(\cfrac{3x^2-5y^2}{3x^2+5y^2} \) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
16. \(x,12,y,27\) āĻā§āϰāĻŽāĻŋāĻ āϏāĻŽāĻžāύā§āĻĒāĻžāϤ⧠āĻšāϞā§, \(x\) āĻ \(y\)-āĻāϰ āϧāύāĻžāϤā§āĻŽāĻ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋāĨ¤
17. (â5+â2) Ãˇâ7=1/7 (â35+a) āĻšāϞā§, a-āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
18. āĻĒāĻžāĻļā§āϰ āĻāĻŋāϤā§āϰ⧠āĻŦā§āϤā§āϤā§āϰ āĻā§āύā§āĻĻā§āϰ O āĻāĻŦāĻ BOA āĻŦā§āϤā§āϤā§āϰ āĻŦā§āϝāĻžāϏāĨ¤ āĻŦā§āϤā§āϤā§āϰ P āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻ āĻā§āĻāĻŋāϤ āϏā§āĻĒāϰā§āĻļāĻ āĻŦāϰā§āϧāĻŋāϤ BA āĻā§ T āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§āĨ¤ â PBO=30°āĻšāϞā§,â PTAāĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋāĨ¤
19. \(x=3+\sqrt8\) āĻāĻŦāĻ \(y=3-\sqrt8\) āĻšāϞā§, \(x^{-3}+y^{-3}\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ āĨ¤
(a) 199 (b) 195 (c) 198 (d) 201
20. \((a-2)x^2+3x+5=0\) āϏāĻŽā§āĻāϰāĻŖāĻāĻŋ \(a\) āĻāϰ āĻā§āύ āĻŽāĻžāύā§āϰ āĻāύā§āϝ āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§ āύāĻž āϤāĻž āύāĻŋāϰā§āĻŖā§ āĻāϰāĻŋ āĨ¤
(a) \(a=0\) (b) \(a=2\) (c) \(a=4\) (d) \(a=-2\)
21. y āĻĻā§āĻāĻŋ āĻāϞā§āϰ āϏāĻŽāώā§āĻāĻŋāϰ āϏāĻŽāĻžāύ,āϝāĻžāϰ āĻāĻāĻāĻŋ x āĻāϞā§āϰ āϏāĻā§āĻā§ āϏāϰāϞāĻā§āĻĻ āĻāĻŦāĻ āĻ āύā§āϝāĻāĻŋ x āĻāϞā§āϰ āϏāĻā§āĻā§ āĻŦā§āϝāϏā§āϤāĻā§āĻĻā§ āĻāĻā§ āĨ¤ x=y āĻšāϞ⧠y=-1 āĻāĻŦāĻ x=3 āĻšāϞ⧠y=5;x āĻ y āĻāϰ āĻŽāϧā§āϝ⧠āϏāĻŽā§āĻĒāϰā§āĻ āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
22. āĻāĻāĻāĻŋ āϞāĻŽā§āĻŦ āĻŦā§āϤā§āϤāĻžāĻāĻžāϰ āĻļāĻā§āĻā§āϰ āĻāϝāĻŧāϤāύ V āĻāύ āĻāĻāĻāĨ¤ āĻā§āĻŽāĻŋ āϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ A āĻŦāϰā§āĻāĻāĻāĻ āĻāĻŦāĻ āĻāĻā§āĻāϤāĻž H āĻāĻāĻ āĻšāϞā§, \(\frac{AH}{V}\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰā§āĨ¤ Madhyamik 2023
23. āύā§āĻā§āϰ āĻĒāϰāĻŋāϏāĻāĻā§āϝāĻž āĻŦāĻŋāĻāĻžāĻāύā§āϰ āϝā§āĻāĻŋāĻ āĻā§ 50 āĻāĻŦāĻ āĻŽā§āĻ āĻĒāϰāĻŋāϏāĻāĻā§āϝāĻž 120 āĻšāϞā§, \(f_1\) āĻ \(f_2\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ āĨ¤
24. \( tan (θ + 15°) = â3\) āĻšāϞā§, \(sinθ + cosθ\) -āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ⧠āĨ¤ Madhyamik 2017
25. \(x=2+\sqrt3\) āĻāĻŦāĻ \(x+y=4\) āĻšāϞ⧠\(xy+\cfrac{1}{xy}\) āĻāϰ āϏāϰāϞāϤāĻŽ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰ⧠āĨ¤ Madhyamik 2020
26. \(\cos\alpha =\sin\beta\) āĻāĻŦāĻ \(\alpha , \beta\) āĻāĻā§ā§āϰ āϏā§āĻā§āώāĻā§āĻŖ āĻšāϞā§, \(\sin (\alpha+\beta)\) -āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ āĨ¤ Madhyamik 2014
27. \(x=sin^2 30°+4cot^2 45° -sec^2 60°\) āĻšāϞ⧠\(x\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ⧠āĨ¤ Madhyamik 2013
28. \(x\sin 60° \cos^2 30°=\cfrac{\tan^2 45° \sec 60°}{cosec 60°}\) āĻšāϞā§, \(x\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ⧠āĨ¤ Madhyamik 2012 , 2009
29. \(a=\cfrac{\sqrt5+1}{\sqrt5-1}\) āĻāĻŦāĻ \(b=\cfrac{\sqrt5-1}{\sqrt5+1}\) āĻšāϞ⧠\(\cfrac{a^2+ab+b^2}{a^2-ab+b^2}\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ⧠āĨ¤ Madhyamik 2012
30. \(A \propto B\); āϝāĻāύ \(A=2\) āϤāĻāύ \(B=14\) āĻšā§ āĨ¤ \(A=5\) āĻšāϞ⧠\(B\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ⧠āĨ¤ Madhyamik 2011