1. 3 সেমি. দৈর্ঘ্যের ব্যাসার্ধবিশিষ্ট AB একটি সরলরেখাংশ অঙ্কন করে A বিন্দুকে কেন্দ্র করে AB দৈর্ঘ্যের ব্যাসার্ধ নিয়ে একটি বৃত্ত অঙ্কন করি এবং B বিন্দুতে ওই বৃত্তের স্পর্শক অঙ্কন করি।
2. 5 সেমি. দৈর্ঘ্যের বাহুবিশিষ্ট একটি সমবাহু ত্রিভুজ ABC অঙ্কন করে ওই ত্রিভুজের পরিবৃত্ত অঙ্কন করি। A বিন্দুতে ওই বৃত্তের স্পর্শক অঙ্কন করি এবং স্পর্শকের উপর P এমন একটি বিন্দু নিই যাতে AP = 5 সেমি. হয়। P বিন্দু থেকে বৃত্তের অপর স্পর্শকটি অঙ্কন করি এবং এই স্পর্শকটি বৃত্তকে কোন বিন্দুতে স্পর্শ করেছে তা লক্ষ করে লিখি।
3. 2.5 সেমি. দৈর্ঘ্যের ব্যাসার্ধবিশিষ্ট একটি বৃত্ত অঙ্কন করি। ওই বৃত্তের বাইরে এমন একটি বিন্দু নিই, কেন্দ্র থেকে যার দূরত্ব 6.5 সেমি.। ওই বহিঃস্থ বিন্দু থেকে বৃত্তের একটি স্পর্শক অঙ্কন করি এবং স্কেলের সাহায্যে ওই স্পর্শকের দৈর্ঘ্য নির্ণয় করি।
4. 2.8 সেমি. দৈর্ঘ্যের ব্যাসার্ধবিশিষ্ট একটি বৃত্ত অঙ্কন করি। বৃত্তের কেন্দ্র থেকে 7.5 সেমি. দূরে একটি বিন্দু নিই। ওই বহিঃস্থ বিন্দু থেকে বৃত্তের দুটি স্পর্শক অঙ্কন করি।
5. 5 সেমি. দৈর্ঘ্যের বাহুবিশিষ্ট একটি সমবাহু ত্রিভুজ ABC অঙ্কন করে \(\triangle\)ABC-এর পরিবৃত্ত অঙ্কন করি। ওই পরিবৃত্তের A, B ও C বিন্দুতে স্পর্শক অঙ্কন করি।
6. ৪ সেমি. দৈর্ঘ্যবিশিষ্ট একটি সরলরেখাংশ XY অঙ্কন করে XY-কে ব্যাস করে একটি বৃত্ত অঙ্কন করি। X ও Y বিন্দুতে বৃত্তের স্পর্শক অঙ্কন করি এবং এই স্পর্শক দুটির মধ্যে কী সম্পর্ক লিখি।
7. O কেন্দ্রীয় বৃত্তের উপর P একটি বিন্দু। P বিন্দুতে বৃত্তের স্পর্শক অঙ্কন করি এবং ওই স্পর্শক থেকে বৃত্তের ব্যাসার্ধের দৈর্ঘ্যের সমান করে PQ অংশ কেটে নিই। Q বিন্দু থেকে বৃত্তের অপর স্পর্শক QR অঙ্কন করি এবং চাদার সাহায্যে ∠PQR পরিমাপ করে তার মান লিখি।
8. কোনো বৃত্তের বহিঃস্থ কোনো বিন্দু থেকে বৃত্তটির উপর 8 সেমি দৈর্ঘ্যের একটি স্পর্শক অঙ্কন করতে হবে। বৃত্তটির ব্যাসার্ধ 6 সেমি হলে , বৃত্তটির কেন্দ্র থেকে বহিঃস্থ বিন্দুটির দূরত্ব কত ?
(a) 10 সেমি (b) 8 সেমি (c) 6 সেমি (d) 14 সেমি
9. 2.6 সেমি. দৈর্ঘ্যের ব্যাসার্ধের একটি বৃত্ত অঙ্কন করো এবং ঐ বৃত্তের কেন্দ্র থেকে 6 সেমি. দূরে, ঐ বৃত্তের বহিঃস্থ কোনো বিন্দু থেকে বৃত্তটির একটি স্পর্শক অঙ্কন করো। Madhyamik 2022
10. যে-কোনো একটি বৃত্ত অঙ্কন করে তার দুটি ব্যাস অঙ্কন করি যারা পরস্পর লম্বভাবে অবস্থিত। ব্যাস দুটির চারটি প্রান্তবিন্দুতে বৃত্তের চারটি স্পর্শক অঙ্কন করি এবং এরফলে যে চতুর্ভুজটি গঠিত হলো তা কী ধরনের চতুর্ভুজ বুঝে লিখি।
11. AB একটি সরলরেখাংশের উপর O একটি বিন্দু এবং O বিন্দুতে AB-এর উপর PQ একটি লম্ব অঙ্কন করি। A এবং B বিন্দুকে কেন্দ্র করে যথাক্রমে AO এবং BO দৈর্ঘ্যের ব্যাসার্ধ নিয়ে দুটি বৃত্ত অঙ্কন করি এবং এই বৃত্তদুটির সাপেক্ষে PQ-কে কী বলা হয় লিখি। P বিন্দু থেকে বৃত্ত দুটির অপর স্পর্শক দুটি অঙ্কন করি।
12. O কেন্দ্রীয় একটি বৃত্তের PQ একটি জ্যা। P ও Q বিন্দুতে বৃত্তের স্পর্শক অঙ্কন করি।
13. একটি বৃত্তের উপর অবস্থিত P ও Q বিন্দু দুটিতে অঙ্কিত স্পর্শক দুটি A বিন্দুতে ছেদ করেছে। ∠PAQ = 60° হলে ∠APQ-এর মান নির্ণয় করি।
14. একটি বৃত্তের বহিঃস্থ কোনো বিন্দু A থেকে অঙ্কিত AB ও AC দুটি স্পর্শক বৃত্তকে B ও C বিন্দুতে স্পর্শ করে। উপচাপ BC-এর উপর অবস্থিত X বিন্দুতে অঙ্কিত স্পর্শক AB ও AC-কে যথাক্রমে D ও E বিন্দুতে ছেদ করে। প্রমাণ করি যে, ∆ADE-এর পরিসীমা = 2 AB.
15. কোনো বৃত্তের XY একটি ব্যাস। বৃত্তটির উপর অবস্থিত A বিন্দুতে PAQ বৃত্তের স্পর্শক। X বিন্দু থেকে বৃত্তের স্পর্শকের উপর অঙ্কিত লম্ব PAQ-কে Z বিন্দুতে ছেদ করেছে। প্রমাণ করি যে, XA, ∠XYZ-এর সমদ্বিখণ্ডক।
16. O কেন্দ্রীয় কোনো বৃত্তের উপর অবস্থিত A বিন্দুতে স্পর্শকের উপর X যে-কোনো একটি বিন্দু। X বিন্দু থেকে অঙ্কিত একটি ছেদক বৃত্তকে Y ও Z বিন্দুতে ছেদ করে। YZ-এর মধ্যবিন্দু P হলে, প্রমাণ করি যে, XAPO বা XAOP একটি বৃত্তস্থ চতুর্ভুজ।
17. O কেন্দ্রীয় কোনো বৃত্তের একটি ব্যাসের উপর P যে-কোনো একটি বিন্দু। ওই ব্যাসের উপর O বিন্দুতে অঙ্কিত লম্ব বৃত্তকে Q বিন্দুতে ছেদ করে। বর্ধিত QP বৃত্তকে R বিন্দুতে ছেদ করে। R বিন্দুতে অঙ্কিত স্পর্শক বর্ধিত OP-কে S বিন্দুতে ছেদ করে। প্রমাণ করি যে, SP=SR.