Loading content...
\(x = 3+2√2\)
\(=2+1+2\sqrt2\)
\(=(\sqrt2+1)^2\)
\(\therefore \sqrt{x}=\sqrt2+1\)
এবং \(\cfrac{1}{\sqrt{x}}=\cfrac{1}{\sqrt2+1}\)
\(=\cfrac{(\sqrt2-1)}{(\sqrt2+1)(\sqrt2-1)}\)
\(=\cfrac{(\sqrt2-1)}{2-1}\)
\(=\sqrt2-1\)
\(\therefore \left(√x + \cfrac{1}{√x}\right)=\sqrt2+1+\sqrt2-1\)
\(=2\sqrt2\)