\(x:a=y:b=z:c\) হলে দেখাও \(\cfrac{x^3}{a^3}+\cfrac{y^3}{b^3}+\cfrac{z^3}{c^3}=\cfrac{3xyz}{abc}\) । Madhyamik 2020


ধরি, \(x:a=y:b=z:c=k\)
বা, \(\cfrac{x}{a}=\cfrac{y}{b}=\cfrac{z}{c}=k\)

\(\therefore\) বামপক্ষ =\(\cfrac{x^3}{a^3}+\cfrac{y^3}{b^3}+\cfrac{z^3}{c^3}\)
=\(\left(\cfrac{x}{a}\right)^3+\left(\cfrac{y}{b}\right)^3+\left(\cfrac{z}{c}\right)^3\)
=\(k^3+k^3+k^3=3k^3\)

ডানপক্ষ=\(\cfrac{3xyz}{abc}\)
=\(3\times\cfrac{x}{a}\times \cfrac{y}{b}\times \cfrac{z}{c}\)
\(=3k.k.k=3k^3\)

\(\therefore\) বামপক্ষ=ডানপক্ষ (প্রমাণিত) ।

Similar Questions