\(\left(\cfrac{1}{\sqrt{2}+1}+\cfrac{1}{{\sqrt3}+{\sqrt2}}+\cfrac{1}{{\sqrt4}+{\sqrt3}}\right)\)এর সরলতম মান নির্ণয় করো।
Loading content...

\(\left(\cfrac{1}{\sqrt{2}+1}+\cfrac{1}{{\sqrt3}+{\sqrt2}}+\cfrac{1}{{\sqrt4}+{\sqrt3}}\right)\)
\(=\cfrac{(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}+\cfrac{({\sqrt3}-{\sqrt2})}{({\sqrt3}+{\sqrt2})({\sqrt3}-{\sqrt2})}\) \(+\cfrac{({\sqrt4}-{\sqrt3})}{({\sqrt4}+{\sqrt3})({\sqrt4}-{\sqrt3})}\)
\(=\cfrac{(\sqrt{2}-1)}{(\sqrt{2})^2-(1)^2}+\cfrac{({\sqrt3}-{\sqrt2})}{({\sqrt3})^2-({\sqrt2})^2}\) \(+\cfrac{({\sqrt4}-{\sqrt3})}{({\sqrt4})^2-({\sqrt3})^2}\)
\(=\cancel{\sqrt2}-1+\cancel{\sqrt3}-\cancel{\sqrt2}+2-\cancel{\sqrt3}\)
\(=2-1\)
\(=1\) (Answer)

Similar Questions