1. \(x=3+2√2\) হলে, \(x+\cfrac{1}{x}\) -এর মান নির্ণয় করো।
2. \(ax^2+bx+35=0\) সমীকরণের বীজদ্বয় -5 ও -7 হলে, \(a\) এবং \(b\) এর মান লিখি।
3. \(ax^2+bx+35=0\) সমীকরণের বীজদ্বয় -5 ও -7 হলে, \(a\) এবং \(b\) এর মান লিখি।
4. \(kx^2+2x+3k=0(k≠0)\)সমীকরণের বীজদ্বয়ের সমষ্টি এবং গুণফল সমান হলে, \(k\) এর মান লিখি ।
5. \(x^2-22x+105=0\) সমীকরণের বীজদ্বয় \(α\) এবং \(β\) হলে, \((α-β)\) এর মান লিখি ।
6. \(x^2-x=k(2x-1)\)সমীকরণের বীজদ্বয়ের সমষ্টি শূন্য হলে, \(k\) এর মান লিখি ।
7. \(x^2+bx+12=0\) এবং \(x^2+bx+q=0\) সমীকরণদ্বয়ের একটি বীজ \(2\) হলে, \(q\) এর মান লিখি ।
8. \(x=\cfrac{8ab}{a+b}\) হলে, \(\left(\cfrac{x+4a}{x-4a}+\cfrac{x+4b}{x-4b}\right)\) এর মান হিসাব করে লিখি।
9. একটি লম্ব বৃত্তাকার চোঙের বক্রতলের ক্ষেত্রফল \(c\) বর্গ একক, ভূমির ব্যাসার্ধের দৈর্ঘ্য \(r\) একক এবং আয়তন \(v\) ঘন একক হলে, \(\cfrac{cr}{v}\) এর মান কত তা লিখি ।
10. একটি নিরেট গোলকের বক্রতলের ক্ষেত্রফল \(=S\) এবং আয়তন \(=V\) হলে,\( S^3/V^2\) এর মান কত তা লিখি ।\( (π \)এর মান না বসিয়ে)
11. O কেন্দ্রীয় বৃত্তের ABCD একটি বৃত্তস্থ চতুর্ভুজ। DC বাহুকে P বিন্দু পর্যন্ত বর্ধিতকরা হলো। \(\angle\)BCP = 108° হলে, \(\angle\)BOD-এর মান হিসাব করে লিখি।
12. √5 এর করণী নিরসক উৎপাদক √x হলে, x-এর ক্ষুদ্রতম মান কত হবে তা হিসাব করে লিখি । [যেখানে x একটি পূর্ণসংখ্যা ]
13. \((√5+√3)(√5-√3)=25-x^2\) একটি সমীকরণ হলে,\(x\) –এর মান হিসাব করে লিখি ।
14. পাশের বৃত্তস্থ চতুর্ভুজ ABCD-এর AD ও AB বাহুকে যথাক্রমে E ও F বিন্দু পর্যন্ত বর্ধিত করলাম। \(\angle\)CBF = 120° হলে, \(\angle\)CDE -এর মান হিসাব করে লিখি।
15. ABCD বৃত্তস্থ চতুর্ভুজের AB ও DCবাহকে বর্ধিত করায় P বিন্দুতে এবং AD ও BC বাহুকে বর্ধিত করায় Q বিন্দুতে মিলিত হয়েছে। \(\angle\)ADC = 85° এবং \(\angle\)BPC = 40° হলে, \(\angle\)BAD ও \(\angle\)CQD-এর মান হিসাব করে লিখি।
16. y, x -এর বর্গের সঙ্গে সরলভেদে আছে এবং y = 9 যখন x = 9; y-কে x দ্বারা প্রকাশ করি এবং y = 4 হলে, x-এর মান হিসাব করে লিখি।
17. ABC ত্রিভুজের BC বাহুর সমান্তরাল সরলরেখা AB ও AC-কে যথাক্রমে D ও E বিন্দুতে ছেদ। করেছে। AE = 2AD হলে, DB : EC-এর মান হিসাব করে লিখি।
18. \(\sin θ=\cfrac{4}{5}\) হলে, \(\cfrac{ cosecθ}{1+\cot θ}\) -এর মান নির্ণয় করে লিখি।
19. cosecθ- cotθ= √2 - 1 হলে, (cosecθ+ cotθ) -এর মান হিসাব করে লিখি।
20. sinθcosθ=\(\cfrac{1}{2}\) হলে, (sinθ+ cosθ) -এর মান হিসাব করে লিখি।
21. \(\cfrac{sinθ+cosθ}{sinθ-cosθ}=7\) হলে, tanθ-এর মান হিসাব করে লিখি।
22. \(\cfrac{cosecθ+sinθ}{cosecθ-sinθ}=\cfrac{5}{2}\) হলে, sinθ-এর মান হিসাব করে লিখি।
23. \(secθ+cosθ=\cfrac{5}{2}\) হলে, (secθ- cosθ) -এর মান হিসাব করে লিখি।
24. \(tan^2 θ+cot^2 θ= \cfrac{10}{3}\) হলে, tanθ + cotθ এবং tanθ- cotθ-এর মান নির্ণয় করি এবং সেখান থেকে tanθ-এর মান হিসাব করে লিখি।
25. \(sec^2 θ+tan^2 θ = \cfrac{13}{12}\) হলে, \(sec^4 θ- tan^4 θ\)-এর মান হিসাব করে লিখি।
26. ABC সমকোণী ত্রিভুজের ∠B সমকোণ। AB = 8√3 সেমি. এবং BC = 8 সেমি. হলে, ∠ACB ও ∠BAC-এর মান হিসাব করে লিখি।
27. \(x tan 30° + y cot 60° = 0\) এবং \(2x –y tan 45° = 1\) হলে, \(x\) ও \(y\)-এর মান হিসাব করে লিখি।
28. ∆ABC-এর BC বাহুর সমান্তরাল সরলরেখা AB ও AC বাহুকে যথাক্রমে P ও Q বিন্দুতে ছেদ করেছে। PB = AQ, AP= 9 একক, QC = 4 একক হলে, PB-এর দৈর্ঘ্য হিসাব করে লিখি।
29. ∆ABC-এর BC বাহুর সমান্তরাল সরলরেখা AB ও AC বাহুকে যথাক্রমে P ও Q বিন্দুতে ছেদ করেছে। PB-এর দৈর্ঘ্য AP-এর দৈর্ঘ্যের দ্বিগুণ এবং QC-এর দৈর্ঘ্য AQ-এর দৈর্ঘ্যের চেয়ে 3 একক বেশি হলে, AC-এর দৈর্ঘ্য কত হবে, হিসাব করে লিখি।
30. ∆PQR-এর PQ ও PR বাহুর উপর যথাক্রমে X, Y দুটি বিন্দু নিলাম। PX = 2 একক, XQ = 3.5 একক, YR = 7 একক এবং PY = 4.25 একক হলে, XY ও QR পরস্পর সমান্তরাল হবে কিনা যুক্তি দিয়ে লিখি।