1. āϝāĻĻāĻŋ A = B = 45° āĻšāϝāĻŧ, āϤāĻŦā§ āϝāĻžāĻāĻžāĻ āĻāϰāĻŋ āϝā§, \( cos (A+B)=cos A cos B - sin A sin B \)
2. āϝāĻĻāĻŋ \(cosθ = \cfrac{x}{\sqrt{x^2+y^2}}\) āĻšāϝāĻŧ, āϤāĻŦā§ āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰ⧠āϝā§, \(xsinθ = y cosθ\)
3. āϝāĻĻāĻŋ \(cotθ=\cfrac{x}{y}\) āĻšāϝāĻŧ,āϤāĻŦā§ āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰ⧠āϝā§, \(\cfrac{xcosθ-ysinθ}{xcosθ+ysinθ}=\cfrac{x^2-y^2}{x^2+y^2}\)
4. āϝāĻĻāĻŋ \(â P+â Q=90^o\) āĻšāϝāĻŧ, āϤāĻŦā§ āĻĻā§āĻāĻžāĻ āϝā§, \(\sqrt{\cfrac{sinP}{cosQ}}âsinPcosQ=cos^2P\) Madhyamik 2019
5. āϝāĻĻāĻŋ \(\angle\)P+\(\angle\)Q=90° āĻšāϝāĻŧ, āϤāĻŦā§ āĻĻā§āĻāĻžāĻ āϝā§, \(\sqrt{\cfrac{sin P}{cos Q}-sin P cos Q}=cos P\)
6. āϝāĻĻāĻŋ \(â P+â Q=90°\) āĻšāϝāĻŧ,āϤāĻŦā§ āĻĻā§āĻāĻžāĻ āϝā§, \(\sqrt{\cfrac{sinP}{cosQ}-sinP cosQ}= cosP\)
7. āϝāĻĻāĻŋ â P+â Q = 90° āĻšāϝāĻŧ, āϤāĻŦā§ āĻĻā§āĻāĻžāĻ āϝā§, \(\sqrt{\cfrac{\sin P}{\cos Q}-\sin P \cos Q}=\cos P\)
8. āϝāĻĻāĻŋ \(sinθ +sin^2 θ=1\) āĻšāϝāĻŧ, āϤāĻžāĻšāϞ⧠āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, \(cos^2 θ+cos^4 θ=1\)
9. āϝāĻĻāĻŋ\( \angle{P}+\angle Q=90°\) āĻšāϝāĻŧ, āϤāĻŦā§ āĻĻā§āĻāĻžāĻ āϝā§, \(\sqrt{\cfrac{sinP}{cosQ}-sinP cosQ}=cosP\)
10. āϝāĻĻāĻŋ \(x = \cfrac{1+sinθ}{cosθ}\) āĻšāϝāĻŧ,āϤāĻžāĻšāϞ⧠āĻĻā§āĻāĻžāĻ āϝā§, \(x^2-2xtanθ-1=0\)
11. āϝāĻĻāĻŋ \(cos A = sin B\) āĻšāϝāĻŧ, āϤāĻŦā§ \(cos(A + B)\) =?
(a) \(1\) (b) \(\cfrac{1}{2}\) (c) \(0\) (d) \(2\)
12. āϝāĻĻāĻŋ \(\sin\theta+\sin^2\theta=1\) āĻšāϝāĻŧ āϤāĻŦā§ āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰ⧠āϝā§, \(\cos^2\theta+\cos^4\theta=1\)
13. āϝāĻĻāĻŋ, \(\cfrac{sin \theta}{x}=\cfrac{cos \theta}{y}\) āĻšā§ āϤāĻŦā§ āĻĒā§āϰāĻŽāĻžāύ āĻāϰ⧠āϝā§, \(sin\theta -cos\theta =\cfrac{x-y}{\sqrt{x^2+y^2}}\)
14. āϝāĻĻāĻŋ \(Îą\) āĻ \(β\) āĻā§āĻŖ āĻĻā§āĻāĻŋ āĻĒāϰāϏā§āĻĒāϰ āĻĒā§āϰāĻ āĻā§āĻŖ āĻšāϝāĻŧ, āϤāĻžāĻšāϞ⧠āĻĻā§āĻāĻžāĻ āϝā§, \(\cot β+\cos β=\cfrac{\cos β}{\cos Îą (1+\sin β)}\)
15. āϝāĻĻāĻŋ \(cosθ= \cfrac{x}{\sqrt{x^2+y^2}}\) āĻšāϝāĻŧ, āϤāĻžāĻšāϞ⧠āĻĻā§āĻāĻžāĻ āϝā§, \(xsinθ=ycosθ\)
16. āϝāĻĻāĻŋ \(\cfrac{sin θ}{x}=\cfrac{cos θ}{y}\) āĻšāϝāĻŧ, āϤāĻžāĻšāϞ⧠āĻĻā§āĻāĻžāĻ āϝā§, \(sin θ-cos θ = \cfrac{x-y}{\sqrt{x^2+y^2}}\)
17. āϝāĻĻāĻŋ \(sin\theta +cosec\theta=2\) āĻšāϝāĻŧ, āϤāĻŦā§ \((sin^{10}\theta+cosec^{10}\theta)\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰā§āĨ¤
18. āϝāĻĻāĻŋ \(sin^2\theta + 2x cos^2 \theta = 1\) āĻšāϝāĻŧ, āϤāĻŦā§ \(x\)-āĻāϰ āĻŽāĻžāύ āĻšāĻŦā§ _____ Madhyamik 2025
19. āϝāĻĻāĻŋ \(sin(2x-30°)=cos(2y+30°)\) āĻšāϝāĻŧ, āϤāĻŦā§ \(tan(x+y)\)-āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰā§āĨ¤
20. āϝāĻĻāĻŋ \(\angle P+ \angle Q=90°\) āĻšāϝāĻŧ, āϤāĻŦā§ āĻĻā§āĻāĻžāĻ āϝ⧠\(\sqrt{\cfrac{sinP}{cos Q}-sin P.cos Q}=cosP\)
21. āϝāĻĻāĻŋ \(\cfrac{sinθ+cosθ}{sinθ-cosθ}=\cfrac{3}{2}\) āĻšāϝāĻŧ, āϤāĻžāĻšāϞ⧠cosθ=
(a) \(\cfrac{1}{5}\) (b) \(\cfrac{3}{2}\) (c) \(\cfrac{1}{\sqrt{26}}\) (d) āĻā§āύā§āĻāĻŋāĻ āύāϝāĻŧ
22. āϝāĻĻāĻŋ \(3 cos\theta - 4 sin\theta = 5\) āĻšāϝāĻŧ āϤāĻŦā§ \(3sin\theta + 4cos\theta\) -āĻāϰ āĻŽāĻžāύ āĻāϤ?
(a) 1 (b) 2 (c) 0 (d) \(\cfrac{1}{2}\)
23. āϝāĻĻāĻŋ \(cos\theta + sin\theta = \sqrt2 cos\theta\) āĻšāϝāĻŧ āϤāĻŦā§ \(sin\theta â cos\theta\) = ?
(a) \(\sqrt2 sin\theta\) (b) \(-\sqrt2 sin\theta\) (c) \(-\sqrt2 cos\theta\) (d) āĻā§āύā§āĻāĻŋāĻ āύāϝāĻŧ
24. āϝāĻĻāĻŋ \(rcosθ = 2â3\) , \(rsinθ =2\) āĻāĻŦāĻ \(0°<θ<90°\) āĻšāϝāĻŧ, āϤāĻŦā§ \(r\) ,āĻ \(θ\) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰā§āĨ¤ Madhyamik 2024
25. āϝāĻĻāĻŋ \(a(\tan\theta+\cot \theta)=1\), \(\sin\theta+\) \(\cos\theta=b\) āĻšā§, āϤāĻŦā§ āĻĒā§āϰāĻŽāĻžāύ āĻāϰ⧠\(2a=b^2-1\), \((0°\lt \theta \lt 90°)\) Madhyamik 2009
26. āϝāĻĻāĻŋ \(\cot \theta=\cfrac{x}{y}\) āĻšā§, āϤāĻŦā§ \(\cfrac{x\cos\theta-y\sin\theta}{x\cos\theta+y\sin\theta}\) āĻāϰ āĻŽāĻžāύ āĻšā§ -
(a) \(\cfrac{x^2+y^2}{x^2-y^2}\) (b) \(\cfrac{x^2}{x^2-y^2}\) (c) \(\cfrac{x^2}{x^2-y^2}\) (d) \(\cfrac{x^2-y^2}{x^2+y^2}\)
27. āϝāĻĻāĻŋ \(\tan\theta=\cos 30^o+\sin 60^o\) āĻšā§ āϤāĻŦā§ \(\sin(90^o-\theta)\) āĻāϰ āĻŽāĻžāύ āĻšāĻŦā§ -
(a) \(\cfrac{1}{3}\) (b) \(\cfrac{1}{4}\) (c) \(\cfrac{1}{2}\) (d) \(1\)
28. āϝāĻĻāĻŋ \(\theta\) āĻāĻāĻāĻŋ āϧāύāĻžāϤā§āĻŽāĻ āϏā§āĻā§āώā§āĻŽāĻā§āĻŖ āĻāĻŦāĻ \(sin\theta = cos(2\theta + 15°)\) āĻšāϝāĻŧ, āϤāĻžāĻšāϞ⧠\(\theta\) -āĻāϰ āĻŽāĻžāύ :
(a) 30° (b) 25° (c) 60° (d) 90°
29. āϝāĻĻāĻŋ \(ax^2 + b + c = 0\) āϏāĻŽā§āĻāϰāĻŖāĻāĻŋāϰ āĻŦā§āĻāĻĻā§āĻŦāϝāĻŧ \(sin Îą\) āĻ \(cos Îą\), āĻšāϝāĻŧ, āϤāĻžāĻšāϞ⧠\(b^2 =\) ?
(a) \(a^2-2ac\) (b) \(a^2+2ac\) (c) \(a^2-ac\) (d) \(a^2+ac\)
30. āϝāĻĻāĻŋ \(sinθ = cosecθ\) āĻāĻŦāĻ \(0° \le θ \le 90°\) āĻšāϝāĻŧ, āϤāĻŦā§ \(θ\) = ?
(a) \(0°\) (b) \(30°\) (c) \(45°\) (d) \(90°\)