সমাধান করি: \(\cfrac{x+1}{2}+\cfrac{2}{x+1}=\cfrac{x+1}{3}\) \(+\cfrac{3}{x+1} \) \( -\cfrac{5}{6},x≠-1\)


\(\cfrac{x+1}{2}+\cfrac{2}{x+1}=\cfrac{x+1}{3}+\cfrac{3}{x+1}-\cfrac{5}{6}\)
বা, \(\cfrac{x+1}{2}-\cfrac{x+1}{3}+\cfrac{5}{6}=\cfrac{3}{x+1}-\cfrac{2}{x+1} \)
বা, \(\cfrac{3x+3-2x-2+5}{6}=\cfrac{3-2}{x+1} \)
বা, \(\cfrac{x+6}{6}=\cfrac{1}{x+1} \)
বা, \((x+6)(x+1)=6 \)
বা, \(x^2+x+6x+6-6=0 \)
বা, \(x^2+7x=0 \)
বা, \(x(x+7)=0\)

অর্থাৎ,হয় \(x=0 \)
নয়, \(x+7=0∴x=-7 \)

\(∴x=0\) ও \(x=-7\) হল \(\cfrac{x+1}{2}+\cfrac{2}{x+1}= \cfrac{x+1}{3}+\cfrac{3}{x+1}-\cfrac{5}{6}\) দ্বিঘাত সমীকরনের সমাধান ।

Similar Questions