1. 2cosθ =1 হলে,θ-এর মান -
(a) 10° (b) 15° (c) 60° (d) 30°
2. \(sin θ = cos θ\) হলে, \(2θ\) এর মান — Madhyamik 2017
(a) 30° (b) 60° (c) 45° (d) 90°
3. \(cos^2θ-sin^2θ=\cfrac{1}{2}\) হলে, \(cos^4θ-sin^4θ\)-এর মান ––।
4. \( tan (θ + 15°) = √3\) হলে, \(sinθ + cosθ\) -এর মান নির্ণয় করো । Madhyamik 2017
5. \(tan 35° tan 55° = sin θ\) হলে, \(θ\) -এর সর্বনিম্ন ধনাত্মক মান —— হবে । Madhyamik 2018
6. \(sin10θ=cos8θ\) এবং \(10θ\) ধনাত্মক সূক্ষ্মকোণ হলে, \(tan9θ\)-এর মান নির্ণয় করো । Madhyamik 2019
7. \(tan4θ × tan6θ =1\) এবং \(6θ\) ধনাত্মক সূক্ষ্মকোণ হলে, \(tan5θ\) -এর মান নির্ণয় করো।
8. \(sinθ + cosθ = \sqrt2sin(90° – θ)\) হলে, \(cotθ\)-এর মান কত ?
(a) \(\cfrac{\sqrt2}{3}\) (b) \(1\) (c) \(\sqrt2\) (d) \(\sqrt2+1\)
9. \(tan4θ. tan6θ=1\) হলে, \(θ\)-এর মান নির্ণয় করাে। \([0° < θ <90°]\)
(a) 5° (b) 4° (c) 9° (d) 3°
10. sin 10θ = cos 8θ এবং 10θ ধনাত্মক সূক্ষ্মকোণ হলে, tan9θ -এর মান নির্ণয় করি।
11. tan 4θ × tan6θ =1 এবং 6θ ধনাত্মক সূক্ষ্মকোণ হলে, θ -এর মান নির্ণয় করি।
12. \(\sin θ=\cfrac{4}{5}\) হলে, \(\cfrac{ cosecθ}{1+\cot θ}\) -এর মান নির্ণয় করে লিখি।
13. cosecθ- cotθ= √2 - 1 হলে, (cosecθ+ cotθ) -এর মান হিসাব করে লিখি।
14. sinθ+ cosθ=1 হলে, sinθ × cosθ এর মান নির্ণয় করি।
15. sinθ- cosθ= \(\cfrac{7}{13}\) হলে, sinθ+ cosθ-এর মান নির্ণয় করি।
16. sinθcosθ=\(\cfrac{1}{2}\) হলে, (sinθ+ cosθ) -এর মান হিসাব করে লিখি।
17. \(tan^2 θ+cot^2 θ= \cfrac{10}{3}\) হলে, tanθ + cotθ এবং tanθ- cotθ-এর মান নির্ণয় করি এবং সেখান থেকে tanθ-এর মান হিসাব করে লিখি।
18. \(sec^2 θ+tan^2 θ = \cfrac{13}{12}\) হলে, \(sec^4 θ- tan^4 θ\)-এর মান হিসাব করে লিখি।
19. \(\sin(θ –30°) =\cfrac{1}{2}\) হলে, \(\cos θ\) -এর মান ___________
20. \(\cos^2 θ -\sin^2 θ = \cfrac{1}{2}\) হলে, \(\cos^4 θ – \sin^4 θ\) -এর মান __________
21. \(5x^2+9x+3=0\) সমীকরণের বীজদ্বয় α এবং β হলে, \(\cfrac{1}{α}+\cfrac{1}{β}\) এর মান কত?
(a) 3 (b) -3 (c) \(\cfrac{1}{3}\) (d) -\(\cfrac{1}{3}\)
22. \(3x^2+8x+2=0\) সমীকরণের বীজদ্বয় α এবং β হলে, \((\cfrac{1}{α}+\cfrac{1}{β})\) এর মান –
(a) -\(\cfrac{3}{8}\) (b) \(\cfrac{2}{3}\) (c) -4 (d) 4
23. tanθ + cotθ =2 হলে tanθ - cotθ এর মান হবে
(a) 2 (b) 0 (c) -2 (d) \(\cfrac{1}{2}\)
24. tanθcos60° = \(\cfrac{√3}{2}\) হলে sin(θ–15°) এর মান-
(a) \(\cfrac{1}{√2}\) (b) 1 (c) √2 (d) 0
25. rcosθ =1;rsinθ =√3 হলে θ এর মান হবে –
(a) \(\cfrac{π}{2}\) (b) \(\cfrac{π}{3}\) (c) \(\cfrac{π}{4}\) (d) \(\cfrac{π}{6}\)
26. \(\triangle\)ABC এর BC বাহুর সমান্তরাল সরলরেখা AB ও AC বাহুকে যথাক্রমে P ও Q বিন্দুতে ছেদ করে। AP:PB=2:1 এবং AC=18 সেমি হলে, AQ=কত?
(a) 12 সেমি (b) 9 সেমি (c) 6 সেমি (d) কোনটিই নয়।
27. \(\triangle\) ABC এর BC বাহুর সমান্তরাল সরলরেখা AB ও AC বাহুকে যথাক্রমে P ও Q বিন্দুতে ছেদ করে। AP=18 সেমি QC=9 সেমি এবং AQ=2PB হলে, PB=কত ?
(a) 6 সেমি (b) 12 সেমি (c) 18 সেমি (d) 9 সেমি
28. ABCD ট্রাপিজিয়ামের AD\(\parallel\)BC । BC এর সমান্তরাল একটি সরলরেখা AB ও DC কে যথাক্রমে P ও Q বিন্দুতে ছেদ করেছে । AP:PB=2:1 হলে, DQ:QC= কত?
(a) 1:1 (b) 1:2 (c) 1:4 (d) 2:1
29. \(\triangle\)ABC এর BC বাহুর সমান্তরাল সরলরেখা AB ও AC বাহুকে যথাক্রমে D ও E বিন্দুতে ছেদ করে । AB=20 সেমি, BD=14 সেমি হলে, DE:BC=কত?
(a) 7:10 (b) 5:17 (c) 3:10 (d) 7:17
30. একটি বৃত্তের AB ব্যাস এবং PQ এমন একটি জ্যা যা AB এর ওপর লম্বভাবে O বিন্দুতে দন্ডায়মান । OA=8 সেমি OB=2 সেমি, OP=4 সেমি হলে, OQ=কত?
(a) 6 সেমি (b) 4 সেমি (c) 5 সেমি (d) কোনোটিই নয়