প্রমান করো : \(cosec^{2}22^\circ. cot^{2 }68^\circ\)=\(sin^{2} 22^\circ+sin^{2}68^\circ+cot^2 68^\circ\)


বামপক্ষ\(=cosec^2 22° \cot^268°\)
\(=cosec^2 (90°-68°).\cot^268°\)
\(=\sec^268°.\cot^268°\)
\(=(1+\tan^268°).\cot^268°\)
\(=\cot^268°+1\)
\(=cosec^268°\)

ডানপক্ষ\(= \sin^2 22° + \sin^2 68° + \cot^2 68°\)
\(= \sin^2 (90°-68°) + \sin^2 68° + \cot^2 68°\)
\(=\cos^268°+ \sin^2 68° + \cot^2 68°\)
\(=1 + \cot^2 68°\)
\(=cosec^268°\)

\(\therefore\) বামপক্ষ=ডানপক্ষ (প্রমাণিত)

Similar Questions